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Abstract

Background: High-throughput gene expression experiments are widely used to identify the role of genes involved in
biological conditions of interest. MicroRNAs (miRNA) are regulatory molecules that have been functionally associated with
several developmental programs and their deregulation with diverse diseases including cancer.

Methodology/Principal Findings: Although miRNA expression levels may not be routinely measured in high-throughput
experiments, a possible involvement of miRNAs in the deregulation of gene expression can be computationally predicted
and quantified through analysis of overrepresented motifs in the deregulated genes 39 untranslated region (39UTR)
sequences. Here, we introduce a user-friendly web-server, DIANA-mirExTra (www.microrna.gr/mirextra) that allows the
comparison of frequencies of miRNA associated motifs between sets of genes that can lead to the identification of miRNAs
responsible for the deregulation of large numbers of genes. To this end, we have investigated different approaches and
measures, and have practically implemented them on experimental data.

Conclusions/Significance: On several datasets of miRNA overexpression and repression experiments, our proposed
approaches have successfully identified the deregulated miRNA. Beyond the prediction of miRNAs responsible for the
deregulation of transcripts, the web-server provides extensive links to DIANA-mirPath, a functional analysis tool
incorporating miRNA targets in biological pathways. Additionally, in case information about miRNA expression changes is
provided, the results can be filtered to display the analysis for miRNAs of interest only.
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Introduction

MicroRNAs (miRNA) are short, approximately 22 nucleotides

long, endogenously expressed RNA molecules that regulate gene

expression by binding, in a sequence specific manner, to the 39

UnTranslated Region (39UTR) of messenger RNA (mRNA)

molecules [1]. MiRNAs are not only present but can also be

abundant in eukaryotic cells, controlling a wide variety of target

genes [2]. In the past few years, miRNAs have been associated to

the regulation of a wide range of biological processes [3].

High-throughput methods for gene expression profiling are being

massively used in recent years. Such methods strive to describe

specific transcriptomic states of a cell and can identify changes in

expression levels between cell states of interest. Since miRNAs often

regulate large numbers of mRNAs [4], there are cases where

deregulated miRNAs are responsible for a large part of gene

expression changes. MicroRNA expression levels may or may not be

experimentally measured in such experiments. However even if

miRNAs that are down- or upregulated are known, there is always

the possibility that only a subgroup of those miRNAs would be

responsible for the changes in the transcriptome.

Such miRNAs may be identified via computational analysis,

based on the fact that miRNAs target mRNA transcripts in a

sequence dependent manner (Figure 1). Although it is known

that miRNAs usually bind to specific sites in the 39UTR region

of targeted mRNA transcripts, the accurate identification of all

miRNA target genes has not been possible yet. MiRNA

binding sequences often tend to be overrepresented in sets of

miRNA regulated genes compared to a random selection of

genes [4,5]. Different methods have been previously used to

identify over- or under- expressed miRNAs through changes in

the levels of their target genes. Essentially, the procedure

followed by all such approaches is to identify differentially

expressed genes, identify motifs that are overrepresented in

these genes and then connect these motifs back to miRNAs. In

an analysis performed by Lim et al [4] a motif discovery tool,

MEME (Multiple Em for Motif Elicitation)[6], was used in

order to identify motifs of six or more nucleotides in length
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that were significantly overrepresented in 39UTR sequences of

genes downregulated after hsa-miR-1 overexpression, com-

pared to random 39UTR sequences. The hexamer correspond-

ing to position 2–7 of hsa-miR-1 was identified as the most

significantly overrepresented motif.

In a similar experiment, Krutzfeld and colleagues [5] investigated

the role of miRNA mmu-miR-122a in gene expression by

neutralizing the miRNA through antagomirs and measuring the

gene expression in wild type and knockdown cells. In a more

sophisticated approach, they used the Wilcoxon Rank Sum test to

compare hexamer frequencies between deregulated and unchanged

genes between the two conditions. This analysis revealed that the

frequency of the motif corresponding to the seed of mmu-miR-122

was significantly overrepresented in the 39UTRs of upregulated genes

and underrepresented in the 39UTRs of downregulated genes.

Following this discovery, two freely available programs have been

developed that perform similar computational analyses. MiReduce

[7,8], uses the correlation of the genome wide mRNA log fold

changes of genes against the motif content of their 39UTRs. Each

motif contained in the 39UTR contributes linearly to the fold change

prediction. The method iteratively calculates which motifs contribute

most to the level of change of genes. Sylamer [9] is another software

package that identifies overrepresented occurrences of sequences in a

ranked list of genes using the hypergeometric p-value distribution.

This approach calculates frequencies for hexamers 1, 2 and 3 as well

as 7mers (positions 1–7, 2–8) and 8mers (positions 1–8, 2–9) and

involves corrections for nucleotide biases. The p-values of each motif

are compared to all other motifs. From the user point both programs

have to be downloaded and compiled and include a limited data

format as input. MiReduce outputs text files whereas Sylamer

includes a java based graphical interface.

Given the broad impact of miRNAs in different development

stages and diseases we have felt the emerging need for a tool that

provides such investigations in a fast and user-friendly way. We

believe that it is imperative that such a resource be platform

independent and easy to use. A web-based implementation seems

as the obvious choice. In this light, we have developed DIANA-

mirExTra, an interactive and fully web based application that can

be easily used by non-experts. Besides a motif analysis, the web

server offers the option to use evolutionary information in order to

refine results. Additionally, it allows the use of different

nomenclatures for gene names as input and provides direct links

to miRNA target prediction and functional analysis applications.

Results

The basic analysis flow of DIANA-mirExTra (www.microrna.

gr/mirextra) is outlined in Figure 2. In the following section we

will discuss each step of the algorithm in detail

Input Data
The input to the web-server is two sets of genes (changed and

unchanged genes). The user is given the options to use a form in the

webpage or to upload a file with the relative gene names. Gene

names can be provided in any of a wide range of commonly used

Figure 1. A miRNA molecule binds to a miRNA target gene (miTG).
Hexamers 1,2 and 3 correspond to six nucleotide long sequences on the
39UTR complementary to the first nucleotides of the miRNA . Hexamer 2 is
the sequence complementary to the ‘seed’ of the miRNA, which has been
suggested as the most important region for miRNA:miTG binding.
doi:10.1371/journal.pone.0009171.g001

Figure 2. Overview of the algorithm. For each possible hexamer,
the occurrences on the 39UTRs of changed and unchanged genes are
counted. The counts are compared using the Wilcoxon Rank Sum Test
and a p-value produced. The distribution of p-values is plotted in a
histogram. Hexamers are mapped back to known miRNA sequences
(see Figure 1). When DIANA-microT target prediction scores are used,
the Wilcoxon Rank Sum Test is performed between scores of changed
and unchanged genes. A p-value is calculated for each miRNA and a
corresponding histogram is produced. The histogram and sorted p-
values are returned to the user in the Results page (see Figure 4).
doi:10.1371/journal.pone.0009171.g002

DIANA-mirExTra
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nomenclatures (Ensemble gene and transcript IDs, RefSeq IDs,

HUGO, Affymetrix probe codes) and are automatically translated to

Ensemble Gene IDs. The Ensemble database is the base for the

sequences and gene names used by the program. The first list

contains genes whose expression levels have been found to be

significantly changed in a high-throughput experiment. The second

list consists of background genes, which are usually genes that did

not significantly change their expression levels. Optionally, an

unchanged list may not be provided, and all genes not present in the

first list will serve as the background set. Instead of a gene list the

user may provide a list of genes with associated fold change values

(or any other metric used in high-throughput experiments) be

provided instead. In the latter case the changed and unchanged

gene lists are produced by sorting all genes according to the metric

provided and using a user-defined number of genes as ‘‘changed’’.

Optionally, the user may use a miRNA filter, using a list of miRNAs

of interest to calculate results only for hexamers corresponding to

these miRNAs. This option simplifies the results page, and is

especially useful when a miRNA expression measurement has been

performed along the gene expression experiment.

AU Normalization on Microarray Data
When the input data is provided as microarray fold change

levels, a single nucleotide composition bias may arise [10]. Single

nucleotide AU normalization has been shown to improve the

identification of miRNA signatures from microarray data.

DIANA-mirExTra optionally provides such normalization as

shown in Figure 3. When a bias is present the AU normalization

option will diminish the correlation between AU composition and

gene expression changes (Figure 3a, 3b). Moreover, when a bias is

not present, the AU correction step will not significantly affect

input values (Figure 3c, 3d).

Wilcoxon Test
After the input gene lists have been determined, we proceed to

compare the distributions of all possible hexamers on the 39UTR

sequences between them. A one-sided Wilcoxon Rank Sum test is

used in order to identify hexamers that are present significantly

more often in the set of changed genes compared to the

background of unchanged genes, as has been previously proposed

[5]. A probability value (p-value) for each motif is calculated

Figure 3. Results of AU correction. For 1000 genes, out of which 100 are upregulated (red points) and 900 are stable (blue points) the log2(fold
change) is plotted against the percentage of As or Us in the 39UTRs of genes. The top panels (A,B) show data with a linear AU bias and the bottom
panels (C,D) show data with no AU bias. The left panels (A,C) show original data and the right panels (B,D) show data after AU correction. An optimal
linear fit (black line) passes through the data with a correlation coefficient (R2) denoted for each panel. A dotted red line denotes the 100 genes with
the highest log2(fold change) values.
doi:10.1371/journal.pone.0009171.g003

DIANA-mirExTra
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signifying the probability that the changed and unchanged sets are

produced by the same distribution and the differences between

them are due to chance alone. As a more intuitive measure, the

equivalent negative natural logarithm of the p-value (-lnp) is

generally used. A histogram of the distribution of -lnp values of all

motifs is provided in the results page so that the user may visually

evaluate the significance of the results for a motif or miRNA of

interest (Figure 4). Hexamers are mapped back onto the first 8

nucleotides of a miRNA (Figure 1), known to be the most

important for the miRNA:mRNA binding [11,12].

Combination of Hexamers
The hexamer starting at position 2 of the miRNA, frequently

called the ‘seed’ hexamer (Figure 1), can be used for an

approximate identification of miRNA binding sites, with identi-

fication precision similar to some dedicated target prediction

algorithms (Selbach et al. 2008). However, more than one

miRNAs may share the same seed hexamer. We investigated

whether it is possible to distinguish between similar miRNAs by

using the p-values of flanking hexamers 1 and 3. Weighted -lnp

values of three hexamers corresponding to each miRNA were

summed using different weights to produce a total hexamer score

(Figure 5). As a result, DIANA-mirExTra provides a combinatorial

hexamer score in which the -lnp value of hexamer 1 is multiplied

by a weight of 0.6 and added to the -lnp value of hexamer 2, and

hexamer 3 is not taken This approach allows a single score per

miRNA that takes into account the whole active region of the 8

first nucleotides of the miRNA.

Conserved Hexamers
Hexamers corresponding to miRNAs represent an extremely

loose definition of miRNA target sites. Arguably most of the

hexamers present on the 39UTR of a gene will not be parts of

active miRNA target sites. Interspecies conservation has been

extensively used by miRNA target prediction programs in order to

refine predictions of putative miRNA target sites. Conservation of

hexamers between human and mouse sequences can be optionally

used in DIANA-mirExTra for a stricter and more precise

definition of miRNA target sites. This option prevents a part of

randomly occurring hexamers from being counted as miRNA

targets, but will be intrinsically biased towards miRNAs strongly

conserved between the human and murine genomes.

Use of Target Prediction
Another option provided by DIANA-mirExTra is the use of

miRNA target prediction scores instead of hexamer frequencies on

a 39UTR. A one-sided Wilcoxon Rank Sum test is performed for

each miRNA, between the target prediction scores of the list of

‘changed’ genes versus the target prediction scores of the list of

‘unchanged’ genes. Target prediction scores are calculated by

DIANA-microT [13,14], an advanced miRNA target prediction

program that takes into account diverse features such as

evolutionary conservation in several species and weights for

different types of binding sites.

Meta-Analysis: Integration with DIANA-mirPath
After results are produced, a link to the results page is returned to

the user via email. Runs typically take approximately 10 minutes.

The main DIANA-mirExTra Results Page (Figure 4a) shows p-

values associated with each hexamer sorted in order of significance.

A histogram of the -lnp values of all possible hexamers allows the

user to evaluate the significance of the p-values of a given motif.

Links to Results pages for combined motifs and target prediction

score results allow the user to navigate to these pages (Figure 4b,4d).

For the targets of each miRNA belonging to the set of ‘changed’

genes a link to functional analysis using DIANA-mirPath [15] is

provided (Figure 4c). DIANA-mirPath is a tool that identifies

KEGG pathways [16,17] enriched in the genes of interest. Such

functional analysis may help to elucidate the biological function of a

miRNA implicated in the condition of interest.

Evaluation
DIANA-mirExTra was tested on several experimental datasets in

which a single miRNA has been artificially deregulated, and mRNA

levels measured using microarrays. In such a high throughput

experiment [4], human miRNA hsa-miR-1 was overexpressed in

HeLa cells and the mRNA levels of protein coding genes were

measured by microarray before and after the introduction of the

miRNA. Using a set of 82 genes identified as downregulated in the

original paper, we have identified the three hexamers associated

with hsa-miR-1 as the most significantly overrepresented hexamers

and the combined score of hsa-miR-1 as the top ranking score. In

the same paper a similar experiment was performed with the

overexpression of hsa-miR-124 in HeLa cells. All three hexamers

corresponding to hsa-miR-124 achieved the maximum -lnp value

and consequently the combined score of hsa-miR-124 was also the

top-ranking one. In other experiments involving the repression of

miRNA functionality using ‘antagomirs’ [5] and miR-155 deficient

mice, DIANA-mirExTra has correctly identified the repressed

murine miRNA in both occasions (mmu-miR-122a and mmu-miR-

155) using microarray data. For both experiments the miRNA in

question is found as top of the combined scores list, with a large

difference in combined score to the second miRNA.

Beyond expression microarray data, DIANA-mirExTra was

also tested on high-throughput protein data. In a recent set of

experiments [18], a large number of proteins were identified as

downregulated after overexpression of each of five miRNAs (let-

7b, miR-155, miR-16, miR-1, miR-30a) and pulsed stable isotope

labeling with amino acids in cell culture (pSILAC) assays. DIANA-

mirExTra was used to identify the implicated miRNA in each of

these cases. The hexamer in position 2 has been found as the

top ranking hexamer with the maximum possible -lnp value in

all datasets. All results pages for datasets mentioned above can

be openly accessed online at http://diana.cslab.ece.ntua.gr/

hexamers/prec_results.php.

An early version of DIANA-mirExTra has been used in order to

identify multiple miRNAs involved in the progression from early

to late stage Epithelial Ovarian Cancer (EOC) [19]. Among other

experiments, 76 EOC specimens (8 early and 68 late stage EOC)

were analyzed using microarrays and 948 genes were identified as

significantly upregulated in late stage EOC. A further 15212 genes

were considered as unchanged between the two cancer stages.

Using this data, the DIANA-mirExTra algorithm was effectively

used to predict twelve miRNAs as significant candidates possibly

contributing to late-stage EOC. Five of these twelve miRNAs were

located on a specific miRNA gene cluster (Dlk1 – Gtl2 domain on

chr14) suggesting that this miRNA cluster could possibly be

involved with EOC progression to the late stage. Further

experiments showed that the miRNA gene cluster identified by

DIANA-mirExTra is commonly altered in EOC and possibly

other human epithelial tumors, thus validating the involvement of

these miRNAs in EOC progression. Additionally, a link was

established between down-regulation of the expression of miRNAs

encoded in the Dlk1 – Gtl2 cluster and higher tumor proliferation

leading to shorter patient survival times. The functional analysis of

predicted target genes for the top microRNAs responsible for the

transition identified the ‘‘Cell Cycle’’pathway as significantly

DIANA-mirExTra
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Figure 4. Results Page and links (Epithelial Ovarian Cancer). Genes upregulated and miRNAs downregulated in late stage Epithelial Ovarian
Cancer (EOC) compared to early stage EOC were run through DIANA-mirExTra. The main results page (A) consists of two parts. At the top of the page
is the histogram of the distribution of –lnp values for all possible hexamers and at the bottom, the sorted list of hexamers that can be mapped on
deregulated miRNAs with corresponding p-values. The same hexamer can be shown multiple times if it can be mapped on more than one miRNAs.
Hexamers are sorted according to p-value and negative natural logarithm (-lnp value). Following the link ‘‘View Results per microRNA’’ the user is
taken to a page (B) showing miRNAs sorted according to a combinatorial score produced by the values of hexamers 1 and 2. The link ‘‘View Results
per microRNA based on DIANA-microT target prediction scores’’ leads to a similar results page (C) that uses as a measure the scores of each gene
according to miRNA target prediction program DIANA-microT. (D) Genes that contain at least one of the top ten hexamers are marked in the results
page of DIANA-microT. The DIANA-microT results page for each miRNA can be found following the link on the miRNA name from the first results
page. Additionally, links to DIANA-mirPath lead to a page (E) showing functional analysis results using this program. Genes containing the hexamer of
interest (A), or targeted by the miRNA of interest (C) are mapped on KEGG pathways and the most significantly overrepresented pathways can be
identified by their corresponding p-values.
doi:10.1371/journal.pone.0009171.g004

DIANA-mirExTra
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related with these genes. Other cancer related pathways were

strongly related to the sets of genes suggesting ways in which

miRNAs may affect EOC.

Discussion

The identification of miRNAs affecting the deregulation of

genes is the primary objective of DIANA-mirExTra. Once

miRNAs of interest are identified, the user can directly view

predicted targets for these miRNAs as produced by DIANA-

microT 3.0 [13,14]. However, the way in which this deregulation

may contribute to disease development or other processes of

interest can be elucidated through functional analysis of the results.

DIANA-mirExTra moves towards this direction through its direct

integration with a functional analysis tool, DIANA-mirPath,

suggesting biological pathways in which targets of a miRNA of

interest are more probable to be involved.

With our implementation of the algorithms proposed here in a

user-friendly web server we strive to allow users without expertise in

data analysis to use our algorithms easily and effectively. In other

relevant available software packages, that first need to be downloaded

and installed locally, 39UTR and miRNA sequences have to be

provided by the user in a program-specific format. In DIANA-

mirExTra sequences are automatically downloaded by the Ensembl

database [20] and linked to several widely used nomenclatures. This

allows the direct use of the program without the prior download of

bulky sequence files and without the need to process such files to fit a

predetermined format. Additionally, the program is run in a web

browser, without the need for download and compilation of source

code. Results are stored in an online server and are accessible from

anywhere and at all times. All submitted jobs are run remotely on a

dedicated computational cluster, and allow users with low computa-

tional power to use the program without experiencing long running

times or memory problems

Using the simplest hexamers, the user opts for a loose definition

of a miRNA target gene and may be able to identify processes not

deeply conserved in other species. The option to use hexamers

conserved between human and mouse provides a refinement of

results for processes and miRNAs that are conserved between the

two species. The stricter approach of using predicted microRNA

targets as motifs takes into account conservation in several species

as well as miRNA specific characteristics and could be biased

towards more deeply conserved miRNAs.

Given the important role that miRNA regulation plays in

several cell processes, a routine check of miRNA involvement

should be encouraged even if there is no reason for it to be

suspected. A simple and intuitive online tool such as DIANA-

mirExTra is the obvious choice for such routine checks as it does

not need complicated installation, processing of external datasets

or high computational power on the user end.

Materials and Methods

MicroRNA and 39UTR Sequences
MicroRNA sequences used in all predictions for DIANA-

microT [13,14] are taken from miRBase Build 10.0 [21]. 39UTR

sequences used are the longest annotated 39UTRs from Ensembl

48 [20]. Name conversions to Ensemble gene names are done

based on alternative names provided from Ensembl 48. Multiple

genome alignments are downloaded from UCSC Genome

Browser [22]. Human (hg18) alignment to 16 vertebrate

genomes and Mouse (mm9) alignment to 29 vertebrate genomes

are used.

Hexamers
Non-overlapping six nucleotide long motifs (hexamers) are

counted on the 39UTR sequence of protein coding genes

provided by Ensembl. The count of hexamers is divided by the

length of the 39UTR sequence to calculate normalized counts

(hexamers/nt).

Combination of Hexamers
The difference between the score of the ‘correct’ miRNA and

the next best miRNA that did not have all three same hexamers

was calculated and divided by the score of the ‘correct’ miRNA.

The sum of these differences for five protein data sets [18] was

maximized. The sum was calculated for all combinations of

weights for hexamer 1 and 3 in 0.01 intervals for values between 0

and 1 (Figure 5). Keeping the weight for the ‘seed’ hexamer

constant at 1, we have determined that for a weight of hexamer 1

set to 0.6, no value of hexamer 3 will improve the identification of

the correct miRNA. Therefore DIANA-mirExTra provides a

combinatorial hexamer score in which the -lnp value of hexamer 1

is multiplied by a weight of 0.6 and added to the -lnp value of

hexamer 2. Hexamer 3 is not taken into account for the

calculation of the combinatorial hexamer score.

Conservation
There is the option to use only hexamers perfectly conserved on

the 39UTRs of human and mouse based on multiple species

alignments downloaded from UCSC Genome Browser.

Wilcoxon Rank Sum Test
The statistical package R is used to perform the Wilcoxon Rank

Sum Test between counts or scores of ‘changed’ and ‘unchanged’

Figure 5. Combination of weighted -lnp values of the three
hexamers. The weight for hexamer 1 is on the Y axis, for hexamer 2 is
held constant at a value of 1, and for hexamer 3 is on the X axis. The
mean normalized difference of the correct miRNA versus the next
highest miRNA was maximized for 5 datasets of knocked out miRNAs
(see Methods). The optimal weights combination for hexamers 1 and 3
were identified as 0.6 and 0 respectively. The value for hexamer 3 is still
given in the Results page (see Figure 4) although it is not used for the
combined score calculation.
doi:10.1371/journal.pone.0009171.g005

DIANA-mirExTra
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genes. The function wilcox.exact(exactranktests) is used for the

one-sided test. The maximum p-value that this method may

produce is 10219 which is equal to -lnp = 43.74

AU Bias Correction
When microarray data with fold change values are used as

input, an optional AU content intensity bias removal step is

allowed as described by Elkon and Agami [10]. The statistical

package R is used for the correction, and specifically the scatter

plot smoothing function lowess using default parameters. Artificial

data plotted in Figure 3 consists of 1000 values with a linear

correlation to AU composition (Figure 3a, Figure 3b) or no

correlation to AU composition (Figure 3c, Figure 3d). The

difference of the means between the 100 ‘‘upregulated’’ genes

(red spots) and the 900 ‘‘unchanged’’ genes (blue spots) is the same

between Figure 3a and Figure 3c. Normally distributed noise has

been added to both sets. Several other artificially produced

examples with varying differences and levels of AU bias were

produced (data not shown) with similar results.
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