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Abstract

Background: Adequate normalization minimizes the effects of systematic technical variations and is a prerequisite for
getting meaningful biological changes. However, there is inconsistency about miRNA normalization performances and
recommendations. Thus, we investigated the impact of seven different normalization methods (reference gene index, global
geometric mean, quantile, invariant selection, loess, loessM, and generalized procrustes analysis) on intra- and inter-
platform performance of two distinct and commonly used miRNA profiling platforms.

Methodology/Principal Findings: We included data from miRNA profiling analyses derived from a hybridization-based
platform (Agilent Technologies) and an RT-qPCR platform (Applied Biosystems). Furthermore, we validated a subset of
miRNAs by individual RT-qPCR assays. Our analyses incorporated data from the effect of differentiation and tumor
necrosis factor alpha treatment on primary human skeletal muscle cells and a murine skeletal muscle cell line. Distinct
normalization methods differed in their impact on (i) standard deviations, (ii) the area under the receiver operating
characteristic (ROC) curve, (iii) the similarity of differential expression. Loess, loessM, and quantile analysis were most
effective in minimizing standard deviations on the Agilent and TLDA platform. Moreover, loess, loessM, invariant
selection and generalized procrustes analysis increased the area under the ROC curve, a measure for the statistical
performance of a test. The Jaccard index revealed that inter-platform concordance of differential expression tended to
be increased by loess, loessM, quantile, and GPA normalization of AGL and TLDA data as well as RGI normalization of
TLDA data.

Conclusions/Significance: We recommend the application of loess, or loessM, and GPA normalization for miRNA Agilent
arrays and qPCR cards as these normalization approaches showed to (i) effectively reduce standard deviations, (ii) increase
sensitivity and accuracy of differential miRNA expression detection as well as (iii) increase inter-platform concordance.
Results showed the successful adoption of loessM and generalized procrustes analysis to one-color miRNA profiling
experiments.
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Introduction

MicroRNA (miRNA) expression profiling has become a

standard bioanalytical technique and provides a first important

step in characterizing the role of miRNAs, a class of small (21–

24 nucleotides) noncoding RNAs which regulates gene expres-

sion at the posttranscriptional level (reviewed in [1]). Many

studies which comprise global miRNA detection and quantifi-

cation rely on oligo microarray-based methods (microarray

technology) [2,3]. Microarray methods have the advantage of

being relatively low cost (reviewed in [4]), relatively quick from

RNA labeling to data generation and simple to use [5]

compared to e.g. ultra high-throughput sequencing technologies.

MicroRNA microarray results are similar to mRNA expression
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profiling results most commonly validated by RT-qPCR which

is referred to as ‘gold-standard’ for holistic relative miRNA

quantification [6]. PCR-based platforms for miRNA expression

profiling, which combine simultaneous analysis of a large

number of targets in a single experiment and advantages of

qPCR, are of high interest and very effective.

Unlike for mRNA expression microarrays, comprehensive

quality control and standardization studies [7] are rather limited

for microRNA microarrays. Furthermore, the usual assumptions

employed for mRNA expression array normalization may not

hold true for miRNA arrays as summarized by Sarkar et al. [8].

Studies addressing intra-platform repeatability and inter-plat-

form comparability of different miRNA microarray platforms

[9] or microarray versus RT-qPCR profiling platforms [3,10]

are rare. However, selection of normalization methods for

miRNA microarrays can have effects on resulting data outcome

[8,11–13] and physiological interpretation as adequate normal-

ization methods can minimize the effects of systematic

experimental bias and technical variations (reviewed in [14]).

Optimal normalization of miRNA data may even be more

critical than that of other RNA functional classes since relatively

small changes in miRNA expression may be biologically and

clinically significant [15,16]. Moreover, the recently defined

MIQE guidelines for quality control and standardization of RT-

qPCR experiments [17] imply the use of the optimal

normalization method. There is no clear consensus on the

relative performance of normalization methods for miRNA

profiling data as results and recommendations from previous

studies have been inconsistent [18,19]. Further comparative

studies providing guidance or suggestions of adequate normal-

ization to the community are needed to facilitate the application

of adequate miRNA normalization methods and provide an

estimate for cross-platform comparisons.

Thus, the objective of this study was to investigate the impact

of normalization methods on intra- and inter-platform perfor-

mance of distinct miRNA profiling approaches. We hypothe-

sized that selection of an appropriate normalization method

could minimize standard deviations, increase sensitivity, and

cross-platform similarity of miRNA expression and thus increase

intra- and inter-platform comparability and validity.

This study evaluated the impact of normalization strategies

on a hybridization-based platform from Agilent Technologies

(Santa Clara, USA) (AGL array) and a multiplex/megaplex RT-

qPCR platform from Applied Biosystems (Foster City, USA)

(TLDA) relative to singleplex RT-qPCR (Figure 1). We utilized

normalization methods commonly used in one-color miRNA

microarray or RT-qPCR profiling studies (reference gene index

(RGI), global geometric mean (geomean), quantile, invariant

selection (INV), loess [12,20,21], respectively, and adapted the

LoessM normalization [11] and the assumption-free general

procrustes analysis (GPA) [22] to one-color miRNA profiling

platforms. The biological effect of cell differentiation and

cytokine treatment on miRNA expression implemented the

basis for inter- and intra-platform assessments. Patient derived

primary human skeletal myoblasts and the murine skeletal

muscle cell line PMI28 were cultured as undifferentiated

myoblasts, differentiated myotubes and myotubes which had

been treated with TNF-a in vitro. Thus, we could provide a

comparative study of the impact of normalization methods over

three different biological backgrounds, two species, and two

profiling platforms (Figure 1).

Results and Discussion

Intra-platform Identification and Concordance of
Differential miRNA Expression Depended on the
Normalization Method

Both, oligonucleotide hybridization-based and RT-qPCR-based

techniques are widely used for miRNA expression profiling.

Considerable effects of normalization on the detection of

differentially expressed genes have been reported for one- and

dual-channel miRNA microarrays [9,11]. Therefore, one objective

of this study was to compare and evaluate the impact of RGI,

geomean, quantile, INV, loess, loessM, and GPA normalization

strategies on AGL array and TLDA data. We investigated the

reduction of bias, the quality (diagnostic performance of the test)

and quantity in identifying differentially expressed miRNAs as well

as the dissimilarity of datasets after normalization.

Qualitative and quantitative effects of distinct

normalization methods on the identification of differential

miRNA expression within platforms. We assume that a good

normalization method should minimize the effects of systematic

experimental and technical bias as well as reduce the variance

between replicates. Signal distributions within Agilent arrays and

TLDA cards were more similar after normalization compared to

the non normalized datasets (Figure 2 and 3). The mean inter-

replicate standard deviations of the three biological treatment

groups and two different species were reduced by all normalization

methods applied (Table 1 and 2). For the Agilent platform loess

and loessM were most effective in reducing intra-group variation

followed by INV, quantile, and GPA normalization. TLDA

profiling revealed the least variation between replicates for loessM

normalization followed by loess, quantile, and GPA normalization.

Quantile normalization of TLDA data was reported to be more

effective in reducing standard deviations than geomean normal-

ization [23] which is in line with our data.

Moreover, we evaluated the impact of different normalization

methods on sensitivity and specificity using the receiver operating

characteristic (ROC) curve which is a plot of sensitivity (true

positive rate) versus the formula 1 - specificity (or false positive

rate). The area under the ROC curve (AUC) can be interpreted as

a summary index of classification performance [24] between

biological groups since it is a threshold independent global

performance measure [25]. The effectiveness in distinguishing true

differential expression due to myoblast differentiation or TNF-a
treatment in human and mouse was best for loess, loessM, GPA,

and INV normalization on both profiling platforms, AGL array

and TLDA, as indicated by the mean AUC (Table 3 and 4). Based

on the mean AUC, RGI normalization as well as geomean and

quantile normalization turned out to be inferior in retaining

treatment effects on the AGL array platform. Taken together,

loess, loessM, GPA, and INV normalization robustly maximized

sensitivity and specificity of classification in contrary to quantile

normalization which was effective in the reduction of bias only. In

line with our results Risso et al. [11] showed that loessM, GPA,

and loessM combined with GPA outperformed quantile normal-

ization in terms of sensitivity and specificity.

Our study indicates, that normalization methods which turned

out to increase the area under the ROC curve most effectively

(loess, loessM, GPA, INV) resulted in an increase of significantly

expressed miRs compared to no normalization for AGL array

derived data (Table 5) and a reduction on TLDA derived data

(Table 6), respectively. Latter illustrated that accumulation of

systematic experimental or technical bias within replicates can

either amplify or mask differential expression depending on the

direction of regulation. Thus, applying normalization increase or

MiRNA Profiling Platforms and Their Normalization
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decrease the dynamic (compare Figure S1) and significance of

differential expression (Table 5 and 6). Interestingly, RGI

normalization revealed the highest number of differentially

expressed miRs on both platforms and a comparatively small

area under the ROC curve. The trade-off between the true

positive rate and specificity points to why superior normalization

methods do not necessarily increase the amount of differentially

expressed genes. At the same time the optimal normalization

strategy for a platform’s dataset should yield a reasonable number

of differentially expressed miRNAs since an overly aggressive

normalization technique would cause an ‘‘averaging-out’’ effect

[26].

The impact of normalization methods on the detection of

differential expression was further evaluated by utilizing the

Jaccard index [27] as similarity measure of differentially expressed

gene lists. The non normalized datasets of the Agilent microarray

and TLDA platform showed the tendency to reveal dissimilarity to

the corresponding normalized datasets (Table 7 and 8, Figure S2

and S3) which is consistent with a general impact of normalization

on data distribution, variance and detection of differential

expression as discussed above. In the case of the AGL array,

loess, loessM, GPA, and INV normalized datasets tended to show

similarity in the detection of differentially expressed miRs (Table 7

and 8). The qPCR profiling platform revealed similarity among

loess, loessM, GPA, and quantile normalized data. Thus,

algorithms such as loess or loessM which are capable of removing

intensity-dependent bias and the assumption free GPA algorithm

robustly optimized datasets derived from Agilent microarrays and

TLDA cards. Results from our study suggest that INV normal-

ization performs better than quantile, RGI or geomean normal-

ization on the Agilent microRNA platform. Pradervand et al. [12]

suggested that normalization based on the set of invariants or

quantile were more robust than e.g. scaling. Our study revealed

that quantile normalization performed acceptable well for TLDA

profiling data. However, we cannot confirm that quantile is one of

the most robust normalization strategies as suggested by Rao et al.

[26] and Zhao et al. [19] for miRNA microarrays.

Finally, geomean or RGI normalization did not perform

acceptable well neither on the microarray nor on the qPCR

platform. Our data exemplifies that less sophisticated methods like

geomean or RGI normalization which can only correct for ‘global

multiplicative effects’ might not be sufficient for miRNA profiling

data.

Assessment of assumptions underlying distinct

normalization methods. The adequacy of normalization

approaches might depend on whether the datasets meet the

assumptions which underlie the respective algorithms. Normali-

zation methods such as quantile and loess are based on two

assumptions, (i) only a small portion of miRNAs is differentially

expressed, and (ii) differentially expressed spots are homogeneously

distributed with respect to both, over- and under-expressed

miRNAs [11]. However, these assumptions could fail for miRNA

profiling data [11,13]. Since the number of expressed miRNAs in

a given sample tends to be much smaller than that observed when

profiling mRNA expression the proportion of those that are

differentially expressed (among those expressed at all) is much

larger compared to mRNA [8]. We verified whether the above

assumptions hold true for our datasets. In this study 44.4%

(162 miRNAs) human and 70.1% (410) rodent miRNAs of the

theoretically detectable miRNAs within the TLDA platform

passed the quality control criteria and were considered as

successfully detected. The AGL array platform detected 37.8%

(302 miRNAs) human and 40.5% (282) murine miRNAs of the

theoretically detectable miRNAs. On average, 26.3% of the

expressed miRNAs were differentially regulated within the AGL

array data and 13.0% within the TLDA card data during

myoblast differentiation and cytokine treatment in human and

mouse. Thus, the proportion of differentially regulated miRNAs is

Figure 1. Platforms and normalization methods applied. Overview of intra- and inter-platform comparisons using miRNA microarrays from
Agilent Technologies (AGL Array) and RT-qPCR arrays from Applied Biosystems (TLDA) for human and mouse miRNAs as well as singleplex TaqMan
miRNA assays. Different normalization methods were applied to the platforms. Three distinct biological stages of mouse and primary human skeletal
cells were analyzed.
doi:10.1371/journal.pone.0038946.g001
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in the range revealed by other miRNA profiling studies and less

than 50% as summarized in Rao et al. [26]. However, even if one

would expect a significant fraction to be differentially expressed

INV normalization is particularly appropriate since INV-based

regression assumes that there is a subpopulation of expressed genes

that does not change [12]. Furthermore, the assumption of

symmetry of differentially expressed miRNAs was investigated.

Symmetry of up- and down-regulations for the human and murine

samples was overall balanced across normalization methods and

the non-normalized dataset as reflected by a mean of log2

regulations close to zero namely 0.0760.22 (differentiation) and

20.1860.26 (cytokine treatment) on AGL array platform and

overall symmetry on the TLDA platform with a mean Cq

regulation of 0.2960.3 upon differentiation and 0.1260.51 due to

the effect of cytokine treatment. Moreover, normalization

strategies such as loessM do not depend on the assumptions that

there exists only a small proportion of differentially expressed

miRNAs and the distribution of differential miRNA expression is

symmetrical between over and under expressed [11]. Finally, GPA

is an assumption free approach [22]. Quantile normalization

assumes that the overall distribution of signal intensity does not

change which is the case for AGL array data as well as TLDA data

in this study (Figure 2 and 3). Generally speaking, all normaliza-

tion methods applied within this study were applicable for the

datasets presented here and should be compatible for the vast

majority of studies using one-color hybridization or RT-qPCR

based miRNA profiling platforms.

Platform-specific Selection of Normalization Strategies
can Maximize Inter-Platform Concordance of Differential
miRNA Expression

The confirmation of differential expression by independent and

rather different profiling approaches is of particular interest in

miRNA research. Since comparatively small changes in miRNA

expression might be of physiological relevance the verifiability of

miRNA expression across platforms is a useful approach to get a

first estimate of the biological importance. To evaluate inter-

platform concordance of relative miRNA expression we investi-

gated subsets of 127 miRNAs from human and 201 miRNAs from

mouse samples which contained all miRNAs successfully detected

by both, AGL array as well as TLDA platform.

Intra-platform performance of normalization methods

was confirmed for the platform overlapping miRNA

subset. The impact of different normalization methods on the

quality and quantity of differential expression within the miRNA

overlapping subsets was evaluated. Thereby we wanted to exclude

the effect of a putative subset specific performance of normaliza-

tion methods. We could confirm similar tendencies of normaliza-

tion performance measures in the platform overlapping number of

miRNAs (common inter-platform subset) compared to the

observations for the platform specific miRNA subset described

above. Standard deviations of the six biological groups (three

human and three mouse groups) were reduced by all normaliza-

tion methods applied (Table S1 and S2) compared to the non

normalized datasets. The reduction of standard deviations on the

Agilent platform was most evident for loess and loessM. Moreover,

INV, quantile, RGI, and GPA normalization were effective in

alleviating standard deviations. Variation within the TLDA

platform was lessened most by loessM normalization followed by

loess, quantile, and GPA normalization. The overall sensitivity and

specificity in detection of differential gene expression was best for

loess, loessM, GPA, and INV normalized Agilent microarray and

TLDA data. Loess, loessM, GPA, and INV normalization shifted

the trade-off between true positive rate and false positive rate

towards higher mean AUCs (Table 9 and 10). The numbers of

significantly regulated miRNAs were similarly influenced by the

normalization approaches (Table S3 and S4) as described for the

platform-specific datasets. Since the stability of lowess smoothers is

known to be dependent on the number of data points to which

they are applied [19] it is worth noting that loess and loessM seem

to robustly improve data quality on different sizes of datasets (as

shown for the platform-specific as well common miRNA subset).

In concert with the platform-specific data, results from the

platform-shared miRNA sets underscore the importance of

adequate evaluation and selection of the normalization method

which had distinct impact on the quantity and accuracy of

differential miRNA expression.

Influence of distinct normalization methods on inter-

platform concordance of differential miRNA

expression. Validation of miRNA microarray data by an

independent method such as qPCR has been widely used and

accepted as gold standard. However, platform-specific bias and

performance characteristics might impact consistency across

platforms. We propose that adequate platform-specific normali-

zation methods could maximize inter-platform concordance of

differential miRNA expression. Inter-platform similarity of

miRNA expression regulation was evaluated by calculating the

Jaccard indices between platforms and corresponding normaliza-

tion approaches (Table 11, Figure S4) for the common miRNA

subset. The comparison of Jaccard indices for myoblast differen-

tiation and cytokine treatment in human and mouse showed a

tendency of loess, loessM, quantile, and GPA normalization of

AGL data to increase similarity across platforms. For the TLDA

derived data the results of similarity analysis indicate that loess,

loessM, geomean and RGI increased consistency and reproduc-

ibility of differentially expressed miRNAs across platforms. The

following combinations substantially increased inter-platform

concordance of differential expression as listed in descending

order: AGL-non with TDLA-non, AGL-GPA with TLDA-geom,

AGL-loess/loessM with TLDA-loess/loessM, AGL-quant with

TLDA-RGI (Table 11). Based on the Jarrad index the least inter-

platform concordance was achieved among RGI normalized

Agilent data and INV normalized TLDA data. Comparatively

high Jaccard indices between the non normalized datasets of

Agilent microarray and non normalized TLDA cards might be

explained by the similar number of differentially expressed

miRNAs (Table S3 and S4). As the Jaccard index gives the

intersection of differentially expressed miRNA lists relative to the

union of the miRNA lists the divisor in this calculation is

comparatively small for the non normalized datasets giving a high

similarity measure. However, the absolute number of miRNAs

consistent between the non normalized data is smaller on average

compared to the list overlap of normalized datasets (Figure S5).

Hence, adequate selection of normalization methods such as loess

or loessM could increase the similarity of inter-platform validated

miRNAs. Geomean normalization of TLDA data showed the

tendency to increase inter-platform concordance, but on the basis

of our intra-platform data we can favour geomean normalization

Figure 2. Signal distribution of human microarray and qPCR profiling. Box-whisker plot with 5th and 95th percentiles (black dots) of log2-
transformed human AGL array signals or Cq values of human TLDA platform were shown for nine samples each across different normalization
techniques.
doi:10.1371/journal.pone.0038946.g002
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for TLDA profiling data only when cross-platform validation is

available to avoid false positives. Interestingly, the subset of

differentially expressed miRNAs which were reproducibly identi-

fied across normalized platforms included miRNAs that had been

functionally validated to play a role in skeletal muscle [28,29].

Taken together, our data underscores that adequate normalization

can increase inter-platform comparability and validity. Thus,

normalization might be an important adjustable factor in the

verifiability and consistency of miRNA expression across plat-

forms.

Adequate Normalization of Profiling Data Yields Good
Verifiability by Singleplex Assays

Individual RT-qPCR assay analysis validated inter-

platform concordance of differential expression. We pro-

pose that adequate normalization of miRNA profiling data yields

good verifiability by individual qPCR assays. Hence, we selected

differentially expressed miRNAs (p,0.05) of the loessM-normal-

ized common subset of human miRNAs on AGL array and TLDA

and evaluated expression by individual assays for myoblast

differentiation (Figure 4 A) and cytokine treatment effect

(Figure 4 B). Inter-platform concordance of significantly regulated

miRNAs was validated in the majority of cases (Figure 4 A miR-II

to -V and 4 B miR-II, -IV, -V). Furthermore, miRNAs which were

not significantly regulated on either of the platforms could be

confirmed by individual assays as well (Figure 4 A miR-VI to -IX,

4 B miR-VIII, -IX). Correlation coefficients of individual assays

and loessM normalized AGL array as well as TLDA were

considerable high (Spearman’s R = 0.875, p,0.01) validating

inter-platform concordance of differential expression.

Platform-specific Characteristics of Datasets
Inter-platform differences of variability and dynamic of

differential expression. The total number of differentially

expressed miRNAs was larger for AGL arrays than for TLDA

even if the same miRNA subsets were observed (Table S3 and S4).

In general one would rather expect the RT-qPCR system to reveal

a higher number of differential expressions due to high sensitivity

of the system and template amplification of qPCR. However, the

higher overall miRNA expression standard deviation of

0.63560.112/0.41360.070 (loessM normalized platform specif-

ic/common dataset) compared to AGL array with an average

standard deviation of 0.17360.061/0.13760.077 (loessM nor-

malized platform specific/common dataset) indicated that qPCR

was associated with the amplification of bias as well. Moreover, the

comparison of fold-changes indicated a compression of fold-

change dynamic for the AGL array (Figure S1) compared to

TLDA which is in line with results from Pradervand et al. (2009).

Compression of differential gene expression across platforms was

indicated by linear regression with a slope of 0.302/0.632

(human/mouse) for myoblast differentiation and 0.352/0.233

(human/mouse) for TNF-a treatment (Figure S6). However,

comparison of t-values illustrated a compression of t-values for

the TLDA platform compared to AGL array with a slope of

20.181/20.375 (human/mouse) for myoblast treatment and

20.121/20.414 (human/mouse) for TNF-a treatment (Figure

S7). Hence, we might conclude that in our study the AGL array

identified more differentially expressed genes due to less variance.

Generally speaking, inter-platform similarity was rather low which

is in line with a study by Chen et al. [3] reporting considerable

variability between miRNA microarray and TLDA data indicated

by low correlation between the two methods.

Summary and Conclusions
This is the first comparative study evaluating the impact of RGI,

geomean, INV, quantile, loess, loessM, and GPA normalization

methods on intra-platform performance as well as inter-platform

comparability of two commonly used platforms, a one-color

hybridization-based Agilent microarray versus an RT-qPCR

miRNA profiling platform from Applied Biosystems. We used

mouse and human samples and validated profiling results by

individual miRNA RT-qPCR assays. In summary, normalization

reduced inter-replicate standard deviations and affected differen-

tial miRNA expression detection. Normalization methods like

loess, loessM, GPA, and INV which increased sensitivity of

Figure 3. Signal distribution of mouse microarray and qPCR profiling. Box-whisker plot with 5th and 95th percentiles (black dots) of log2-
transformed mouse AGL array signals or Cq values of mouse TLDA platform were shown for nine samples each across different normalization
techniques.
doi:10.1371/journal.pone.0038946.g003

Table 1. Mean inter-replicate variance was minimized by
applying normalization methods to the AGL array.

Normalization mean ± sdev

RGI 0.183 0.064

Geom 0.204 0.073

Quantile 0.176 0.059

INV 0.176 0.059

Loess 0.173 0.061

LoessM 0.173 0.061

GPA 0.178 0.056

Non 0.320 0.163

Agilent - Intra-platform.
Standard deviation.
The average of intra-replicate standard deviations in human and mouse
myoblasts, myotubes, and cytokine treated myotubes based on the platform-
specific miRNA datasets were depicted. The mean intra-platform standard
deviations depended on the normalization method.
doi:10.1371/journal.pone.0038946.t001

Table 2. Mean inter-replicate variance was minimized by
applying normalization methods to TLDA cards.

Normalization mean ± sdev

RGI 0.662 0.119

Geom 0.651 0.126

Quantile 0.642 0.118

INV 0.696 0.220

Loess 0.636 0.115

LoessM 0.635 0.112

GPA 0.650 0.124

Non 0.738 0.166

TLDA - Intra-platform.
Standard deviation Legend information as specified for Table 1.
doi:10.1371/journal.pone.0038946.t002
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classification did not maximize the number of differentially

expressed miRNAs. Furthermore, the intra-platform performance

of normalization methods was confirmed for the platform

overlapping miRNA subset. In general, selection of the profiling

platform affected the variability and dynamic of differential

miRNA expression. However, the platform-specific selection of

normalization strategies could maximize consistency and repro-

ducibility of differential miRNA expression detection across

profiling platforms and yielded good verifiability by singleplex

qPCR assays. To put it in a nutshell, the choice of the

normalization strategy had a qualitative and quantitative impact

on the identification of differential miRNA expression and could

contribute to the adjustment of platform-specific performance

differences.

In conclusion, we recommend the application of loess, or

loessM, and GPA normalization for miRNA Agilent hybridization

arrays and qPCR TLDA cards. Loess, loessM, and GPA

normalizations showed to (i) effectively reduce standard deviations,

(ii) increase sensitivity and accuracy of differential miRNA

expression detection as well as (iii) increase inter-platform

concordance. This study showed the successful adoption of loessM

and GPA to one-color miRNA profiling experiments. Our results

provide an additional piece of evidence that the choice of the

normalization algorithm and profiling platform has a profound

effect on determining differential miRNA expression and we

encourage researchers to evaluate the sensitivity of their data to

different assumptions and algorithms.

Materials and Methods

Cell Culture
Primary human skeletal muscle cells (hSkMCs) were obtained

from the ‘‘Muscle Tissue Culture Collection’’ at the Friedrich-

Baur-Institute (LMU, Munich, Germany), and were propagated

in skeletal muscle cell growth medium low serum (PromoCell)

supplemented with 10% fetal calf serum (FCS) (PAA Labora-

tories), and 2 mM L-glutamine (PAA Laboratories). The murine

skeletal myoblast cell line PMI28 [30] was cultured in Ham’s

F10 (PAA Laboratories), supplemented with 20% FCS (Sigma-

Aldrich), 2 mM L-glutamine (PAA Laboratories), and 1%

Penicillin/Streptomycin (PAA Laboratories). Myoblasts were

propagated at 37uC in humidified air (80% relative humidity)

and 5% CO2. Human and murine myoblasts were cultured on

laminin-1 coated dishes for an additional 24 h before switching

a fraction of dishes to differentiation medium (DMEM medium

containing 2% horse serum (Gibco), 2 mM L-glutamine (PAA

Laboratories), and 0.1% gentamicin (Gibco) (human myoblasts)

or 1% Penicillin/Streptomycin (murine myoblasts)) with

26103 U/ml human recombinant TNF-a (Roche Applied

Science) or 26103 U/ml murine recombinant TNF-a (Roche

Applied Science) or carrier, respectively. All media were

replenished twice a day. hSkMCs and pmi28 cells were

harvested 24 h after the induction of fusion by serum

withdrawal.

Total RNA Preparation
Human cell pellets were lysed and homogenized with Qiazol

(Qiagen) and total RNA was extracted using the RNeasy Mini

Kit (Qiagen) according to the manufacturer’s instructions.

Murine cells were lyzed in Trizol (Invitrogen) and total RNA

was prepared according to the manufacturer’s instructions.

Total RNA concentrations were determined photometrically

using the NanoDrop 1000 ND-1000 (Peqlab). RNA quality was

characterized using the 2100 Bioanalyzer (Agilent Technologies)

[24]. Samples yielded high RNA quality (RIN values between 8

and 10) and were further processed for profiling or individual

qPCR analyses.

Table 3. Mean area under the ROC curve of AGL arrays.

Normalization AUC mean ± sdev

Loess 0.912 0.079

LoessM 0.912 0.079

Quantile 0.899 0.074

INV 0.908 0.082

GPA 0.911 0.077

RGI 0.872 0.111

Geom 0.886 0.110

Non 0.905 0.113

Agilent - Intra-platform.
ROC curves The average of the AUCs of ROC analyses in human and mouse
myoblast differentiation and cytokine treatment were illustrated based on the
platform-specific miRNA sets. The mean AUC was influenced by normalization
algorithms.
doi:10.1371/journal.pone.0038946.t003

Table 4. Mean area under the ROC curve of TLDA cards.

Normalization AUC mean ± sdev

Loess 0.861 0.154

LoessM 0.861 0.154

Quantile 0.856 0.155

INV 0.889 0.122

GPA 0.884 0.126

RGI 0.856 0.161

Geom 0.858 0.146

Non 0.841 0.170

TLDA - Intra-platform.
ROC curves Legend information as specified for Table 3.
doi:10.1371/journal.pone.0038946.t004

Table 5. Effect of normalization methods on the number of
differentially expressed miRNAs detected by AGL arrays.

Normalization signifcant miRNAs ± sdev

RGI 83 38

Geom 72 35

Quantile 81 37

INV 81 37

Loess 81 37

LoessM 81 37

GPA 79 36

Non 54 31

Agilent - Intra-platform.
Significant miRNAs The mean number of differentially expressed miRNAs
which were identified in distinctively normalized human and mouse myoblast
differentiation and cytokine treated samples were depicted.
doi:10.1371/journal.pone.0038946.t005
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MiRNA Microarray Analysis
MicroRNA expression profiling of myoblasts, myotubes and

cytokine treated myotubes with three cell culture replicates per

groups was performed by using an oligonucleotide hybridization-

based platform from Agilent Technologies. Human samples were

analyzed with the Human MicroRNA Microarray V2 (AGL array)

containing probes for 723 human and 76 human viral miRNAs

from Sanger miRBase 10.1. Murine samples were profiled with

Mouse miRNA Microarray Release 15.0 containing probes for

696 miRNAs from Sanger miRBase release 15.0. We used 100 ng

total RNA per sample and microarray. Labeling and hybridization

was performed according to the manufacturer’s instructions.

Resultant data from AGL arrays were extracted from image files

and log2-transformed utilizing the Feature Extraction Software

(Agilent Technologies). For further analysis only those miRNAs

which showed a signal greater than zero in at least two of the three

cell culture replicates within a group were retained thereby leaving

302 miRNAs for human and 282 miRNAs for murine samples.

Different normalization approaches were applied (see section

‘‘Normalization’’ further below). All Agilent microarray data were

MIAME compliant and were registered into ArrayExpress

database [31], a publicly available repository consistent with the

MIAME guidelines. Data are available with the following

ArrayExpress accession numbers E-MTAB-299 (human dataset)

and E-MTAB-1114 (mouse dataset).

MiRNA RT-qPCR Profiling
The TaqMan Array Human MicroRNA Panel 1.0 (Applied

Biosystems) (based on Sanger miRBase 9.2) facilitated the specific

amplification and detection of 365 different mature human

microRNAs by TaqMan-based quantitative real-time PCR in a

384-well or TaqMan Low Density Array format (TLDA).

Outlining the experimental procedure, for each sample and plate

eight separate multiplex reverse transcription (RT) reactions

(Human Multiplex RT Set Pools 1–8) were performed with

50 ng total RNA each. Stem-loop structured RT primers allowed

for the specific RT of mature miRNAs with single-base

discrimination [32]. The resulting cDNA was loaded into the

arrays and TaqMan real-time PCR was performed using the

7900 HT Fast Real-Time PCR System (Applied Biosystems) with

cycling conditions according to the manufacturer’s protocol.

150 ng total RNA of murine pmi28 samples were reverse

transcribed and preamplified using the MegaPlex Rodent Primer

Pool Set (Life Technologies) according to the manufacture’s

instructions. Preamplified samples were profiled with the TaqMan

Rodent MicroRNA Arrays 2.0 (Life Technologies) including

primers for 585 different mature miRNA. All samples analyzed by

the Agilent platform were included in the TLDA analyses. TDLA

profiling was conducted at IMGM Laboratories GmbH on

Applied Biosystems 7900 HT Fast Real-Time System with cycling

conditions according to the manufacturer’s instructions. Raw data

was obtained using SDS 2.3 software (Applied Biosystems). All

SDS files were analyzed utilizing the RQ Manager 1.2 software

(Applied Biosystems). miRNAs meeting the detection criterion of

showing Cq-values smaller 35 (human samples) or 32 (murine

samples) in at least two of the corresponding triplicates of a group

(as recommended by the vendor) were retained for further data

processing. For the human and the murine samples each, a

common subset of miRNAs passing pre-processing procedure on

both, the AGL array and the TLDA platform, was identified based

on nomenclature and/or sequence identity giving rise to a set of

127 human miRNAs and a common subset of 201 miRNAs for

the mouse cells. Data was normalized as described in section

‘‘Normalization’’.

Validation of miRNA Profiling with RT-qPCR
Selected miRNAs were analyzed in myoblasts (n = 4), myotubes

(n = 3) and myotubes treated with TNF-a (n = 3) using individual

TaqMan MicroRNA Assays and reverse transcription reagents

from Applied Biosystems according to the manufacturer’s instruc-

Table 6. Effect of normalization methods on the number of
differentially expressed miRNAs detected by TLDA cards.

Normalization signifcant miRNAs ± sdev

RGI 47 28

Geom 42 26

Quantile 37 30

INV 21 11

Loess 38 29

LoessM 38 29

GPA 31 20

Non 44 36

TLDA - Intra-platform.
Significant miRNAs Legend information as specified for Table 5.
doi:10.1371/journal.pone.0038946.t006

Table 7. Impact of normalization strategies on the similarity of differential miRNA expression of AGL array data.

Loess LoessM Quantile INV GPA RGI Geom Non

Loess 1

LoessM 1 1

Quantile 0.681 0.681 1

INV 0.815 0.815 0.652 1

GPA 0.787 0.787 0.725 0.742 1

RGI 0.652 0.652 0.638 0.669 0.723 1

Geom 0.576 0.576 0.555 0.547 0.635 0.631 1

Non 0.397 0.397 0.340 0.408 0.355 0.303 0.303 1

Agilent - Intra-platform Jaccard index The mean Jaccard indices of significantly regulated miRNA overlap across normalized datasets were depicted for myoblast
differentiation and cytokine treated samples analyzed of human and mouse. The Jaccard index ranges between zero and one per definition. The closer the Jaccard
index is to one the higher the relative similarity and reproducibility of differential expression across platforms.
doi:10.1371/journal.pone.0038946.t007
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tions. Validation of microRNA profiling data by individual assays

was performed in quadruplicate reverse transcription reactions

and qPCR reactions for each cell culture replicate. MiRNAs

selected for validation include three miRNAs with expression

values corresponding to the median value of not normalized

human TLDA data of myotubes. Two of these miRNAs with

expression values consistent with the median were identified to be

stably expressed by geNorm [33] analysis of TLDA data.

Furthermore, a significantly regulated miRNA with expression

levels below the median was included as well as five significantly

regulated miRNAs (both, during differentiation and cytokine

treatment or as response to cytokine treatment only) with

expression values higher than the median. Most of the selected

miRNAs corresponded to candidates in the upper half of

expression values because significantly, and thus biologically

interesting miRNAs, were identified primarily in the mentioned

expression range.

Normalization
We used seven different methods (RGI, geomean, quantile, INV,

loess, loessM und GPA) to normalize the data. Since there is no gold

standard for miRNA normalization, yet, we worked with all seven

methods. The arithmetic mean of two stably expressed miRNAs as

identified by GeNorm [33] or Normfinder [34] served as reference

gene [35] index. Furthermore, the global geometric mean of all

expressed miRNAs in one sample [20] which met the detection

criteria was used for normalization. The standard normalizations

quantile and loess are described by Bolstad et al. [21] and the

invariant selection was introduced by Pradervand et al. [12]. For

the loessM normalization we adapted the method of Risso et al.

[11]. In order to avoid small values close to 0 the median of the

respondent value in the loess estimation is added to the dataset. This

modification relaxes the assumption of symmetry among up- and

down-regulated genes [11]. Since this intra-array normalization

method is normally used with two dimensional arrays (green and

red signal) we adopted the method for our one dimensional arrays.

A brief description and the corresponding R code can be found in

the Technical Appendix and http://www.statistik.lmu.de/,kaiser/

sup-material.html, respectively. LoessM normalization was applied

since it is an assumption-free inter-array method. The same

problem arose in the Generalized Procrustes Analysis (GPA). Since

Xiong et al. [22] used the GPA for their two-dimensional red and

green signal intensities we used the GPA on the three Groups (MB,

MT, MT+TNF) of arrays instead. A detailed description and code is

enclosed in the Technical Appendix and http://www.statistik.lmu.

de/,kaiser/sup-material.html, respectively. We utilized GPA

normalization since it is an assumption-free inter-array method.

The following normalizations were done in R [36] using the

functions: normalize.quantiles (package preprocessCore, Biocon-

ductor [37]), normalize.loess (package affy, Bioconductor [37]),

normalize.loessM (own code, http://www.statistik.lmu.de/

Table 8. Impact of normalization strategies on the similarity of differential miRNA expression of TLDA card data.

Loess LoessM Quantile INV GPA RGI Geom Non

Loess 1

LoessM 1 1

Quantile 0.723 0.723 1

INV 0.598 0.598 0.513 1

GPA 0.741 0.741 0.677 0.597 1

RGI 0.557 0.557 0.524 0.408 0.526 1

Geom 0.680 0.680 0.606 0.495 0.691 0.596 1

Non 0.560 0.560 0.476 0.468 0.520 0.425 0.421 1

TLDA - Intra-platform Jaccard index Legend information as stated for Table 7.
doi:10.1371/journal.pone.0038946.t008

Table 9. Mean area under the ROC curve of the inter-
platform miRNA subsets for AGL arrays.

Normalization AUC mean ± sdev

Loess 0.923 0.080

LoessM 0.923 0.080

Quantile 0.903 0.069

INV 0.919 0.086

GPA 0.915 0.084

RGI 0.875 0.148

Geom 0.899 0.098

Non 0.902 0.121

Agilent - Inter-platform.
ROC curves The average of the AUCs of ROC analyses in human and mouse
myoblast differentiation and cytokine treatment were shown for the miRNA
subset shared by both platforms. The mean AUC was influenced by
normalization algorithms similar to the platform-specific dataset.
doi:10.1371/journal.pone.0038946.t009

Table 10. Mean area under the ROC curve of the inter-
platform miRNA subsets for TLDA cards.

Normalization AUC mean ± sdev

Loess 0.921 0.094

LoessM 0.921 0.094

Quantile 0.903 0.102

INV 0.920 0.116

GPA 0.923 0.092

RGI 0.912 0.094

Geom 0.910 0.095

Non 0.909 0.138

TLDA - Inter-platform.
ROC curves Legend information as stated for Table 9.
doi:10.1371/journal.pone.0038946.t010
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,kaiser/sup-material.html, Technical Appendix), invariant_

selection.R (Supporting information of [12]), normalize.GPA

(modified procGPA function from package shape, http://www.

statistik.lmu.de/,kaiser/sup-material.html, Technical Appendix).

Table 11. Inter-platform concordance of differential expression and its dependency on normalization methods.

TLDA AGL

Loess LoessM Quantile INV GPA RGI Geom Non

Loess 0.292 0.292 0.280 0.271 0.282 0.230 0.268 0.272

LoessM 0.292 0.292 0.280 0.271 0.282 0.230 0.268 0.272

Quantile 0.270 0.270 0.266 0.259 0.280 0.229 0.253 0.269

INV 0.218 0.218 0.212 0.198 0.213 0.174 0.181 0.267

GPA 0.260 0.260 0.267 0.244 0.275 0.210 0.248 0.246

RGI 0.276 0.276 0.288 0.257 0.282 0.227 0.240 0.245

Geom 0.285 0.285 0.279 0.259 0.296 0.237 0.271 0.242

Non 0.242 0.242 0.224 0.229 0.235 0.176 0.223 0.331

Agilent and TLDA - Inter-platform Jaccard index The average Jaccard indices of significantly regulated miRNA overlap across human and mouse AGL array and
TLDA was depicted for the miRNA subset shared by both platforms. The closer the Jaccard index is to one the higher the relative similarity and reproducibility of
differential expression across platforms.
doi:10.1371/journal.pone.0038946.t011

Figure 4. Differential expression detected by three different miRNA analysis approaches. Concordance and validation of DDCq or
DDlog2 values, respectively, of three different human miRNA analysis methods: Singleplex RT-qPCR assay (RGI), AGL array (loessM), and TLDA
(loessM). The effect of myoblast differentiation (A) and cytokine treatment (B) was investigated. Significant miRNA regulations were indicated by
asterisks. Nine human miRNAs were represented by Latin numbers I–IX (see materials and methods for more detailed information).
doi:10.1371/journal.pone.0038946.g004
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Statistics
Significance of relative quantification [38] of miRNA expression

levels was determined by applying significance analysis of

microarrays (SAM) [39], an assumption free approach adopted

to microarray. SAM identifies differentially expressed miRNAs by

permutation.

Supporting Information

Figure S1 Fold-change distribution. Distribution of fold-

changes of human and mouse AGL microarray and TLDA

platform data during myoblast differentiation and cytokine

treatment were illustrated by box-whisker plots with 5th and 95th

percentiles (black dots). Fold-change distribution of RGI, geo-

mean, quantile, INV, loess, loessM, and GPA normalized and the

non-normalized datasets were depicted.

(TIF)

Figure S2 Human heatmap of relative similarity in
detecting differential expression within distinctively
normalized datasets. Jaccard indices of significantly regulated

miRNA overlap between distinctively normalized datasets were

depicted for myoblast differentiation and cytokine treated samples

analyzed on human AGL array or TLDA card. Colour coding of

the heatmap was gradually from red indicating low similarity to

white indicating a Jaccard index close to one.

(TIF)

Figure S3 Mouse heatmap of relative similarity in
detecting differential expression within distinctively
normalized datasets. Jaccard indices of significantly regulated

miRNA overlap between distinctively normalized datasets were

depicted for myoblast differentiation and cytokine treated samples

analyzed on mouse AGL array or TLDA card. Colour coding of

the heatmap was as stated in Figure S2.

(TIF)

Figure S4 Heatmap of relative inter-platform similarity
in detecting differential expression dependent on the
normalization applied. Jaccard indices of significantly regu-

lated miRNA overlap across the two distinctively normalized

platforms, AGL array and TLDA card, were depicted as heatmap

for myoblast differentiation and cytokine treated samples. Colour

coding of the heatmap was as stated in Figure S2.

(TIF)

Figure S5 Inter-platform absolute concordance of dif-
ferential expression upon cytokine treatment. Inter-

platform concordance of differential expression detected by

human AGL array and TLDA across different normalization

methods and no normalization were exemplarily shown for the

effect of cytokine treatment. The overlapping number of miRNAs

between datasets was depicted for all possible inter-platform

combinations of distinctively normalized datasets.

(TIF)

Figure S6 Fold-change compression by microarray
profiling. Inter-platform fold-change concordance of human

and mouse TLDA and AGL platform of the miRNA subset

common on both platforms was illustrated by scatter plot of mean

values of fold-changes (log2 scale or Cq, respectively). A fold-

change compression of AGL platform values relative to the TLDA

platform was indicated by linear regression (black line) shown with

95% confidence band (blue line) and 95% prediction band (red

line).

(TIF)

Figure S7 Inter-platform concordance of t-values re-
veals compression of t-values by qPCR profiling. Inter-

platform concordance of t-values of human and mouse TLDA and

AGL platform for the common miRNA subsets was illustrated by

scatter plot. A compression of t-values of TLDA platform relative

to the AGL platform was indicated by linear regression (black line)

shown with 95% confidence band (blue line) and 95% prediction

band (red line).

(TIF)

Table S1 Normalization reduced mean inter-replicate
variances within the platform-overlapping miRNA sub-
sets of AGL arrays. The average of intra-replicate standard

deviations in human and mouse myoblasts, myotubes, and

cytokine treated myotubes were illustrated based on the plat-

form-overlapping miRNA datasets.

(XLSX)

Table S2 Normalization reduced mean inter-replicate
variances within the platform-overlapping miRNA sub-
sets of TLDA cards. Legend information as stated for Table S1.

(XLSX)

Table S3 The number of differentially expressed miR-
NAs within the platform-overlapping miRNA subsets of
AGL arrays. The mean number of differentially expressed

miRNAs which were identified in distinctively normalized human

and mouse myoblast differentiation and cytokine treated samples

within the platform-overlapping miRNA subsets were depicted.

(XLSX)

Table S4 The number of differentially expressed miR-
NAs within the platform-overlapping miRNA subsets of
TLDA cards. Legend information as specified for Table S3.

(XLSX)
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