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Abstract

Normalization of expression levels applied to microarray data can help in reducing measure-
ment error. Different methods, including cyclic loess, quantile normalization and median or mean
normalization, have been utilized to normalize microarray data. Although there is considerable lit-
erature regarding normalization techniques for mRNA microarray data, there are no publications
comparing normalization techniques for microRNA (miRNA) microarray data, which are subject
to similar sources of measurement error. In this paper, we compare the performance of cyclic loess,
quantile normalization, median normalization and no normalization for a single-color microRNA
microarray dataset. We show that the quantile normalization method works best in reducing dif-
ferences in miRNA expression values for replicate tissue samples. By showing that the total mean
squared error are lowest across almost all 36 investigated tissue samples, we are assured that the
bias correction provided by quantile normalization is not outweighed by additional error variance
that can arise from a more complex normalization method. Furthermore, we show that quantile
normalization does not achieve these results by compression of scale.

KEYWORDS: microRNA, median normalization, cyclic loess normalization, quantile normal-
ization, robust estimates, smoothing spline, mean squared error
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1 Introduction

In microarray experiments, variation of expression measurements among arrays
can be attributed to many sources, such as differences in sample RNA prepa-
ration, cDNA labeling, image intensity and microarray hybridization/wash effi-
ciency. Normalization of expression levels applied to microarray data can help
in removing this error. Different methods, including cyclic loess, quantile nor-
malization (Bolstad et al. 2003) and median or mean normalization (Churchill
2002, Churchill 2003, Churchill and Oliver 2001, Kerr and Churchill 2001, and
Wolfinger et al. 2001), have been utilized to normalize microarray data. Briefly,
cyclic loess makes the MA plot of probe intensities from every pair of arrays
scatter about theM = 0 axis, quantile normalization makes the distributions
of expression levels the same across arrays, and median or mean normalization
shifts the individual log-intensities on each array so thatthe median or mean
log-intensities, respectively, are the same across arrays. These normalization al-
gorithms can be applied either globally to an entire data setor locally to some
physical subset of the data (Quackenbush 2002). Irizarry etal. (2003) applied
the quantile normalization procedure to normalize dilution data and spike-in data
from Affymetrix arrays, and showed how quantile normalization removed bias
as compared to no normalization. Their analysis was unique in that they knew
the true expression levels and could therefore determine the degree of bias re-
duction from quantile normalization.

MicroRNAs (miRNAs) are noncoding RNAs of 19-24 nucleotidesthat are
negative regulators of gene expression. Recently implicated as important in
development and normal physiology, microRNAs are abnormally expressed in
many human cancers (Volinia et al. 2006, Lu et al. 2005). Moreover, aberrant
microRNA expression has been shown to initiate and promote carcinogenesis
(reviewed in Hagan and Croce 2007). These microRNA expression signatures
may reveal new oncogenetic pathways in human cancers. For systematic in-
vestigation of microRNA expression, oligonucleotide-based microarrays for mi-
croRNAs in human and mouse tissues have been developed recently (Liu et al.
2004) and several commercial platforms are now available. To date, more than a
hundred published reports have used microRNA microarrays to investigate their
expression profiles, where more than two-thirds have used single color versus
two color hybridization systems. Although there is substantial literature regard-
ing normalization techniques for mRNA microarray data, there are no published
reports comparing normalization techniques for microRNA (miRNA) microar-
ray data, which are subject to the similar sources of error variation.

Many statistical reports on mRNA microarrays have focused on Affymetrix
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mRNA arrays, which have an exceedingly high density of probes that arein situ
synthesized on the array. For example, in one Human Genome U133 Plus2.0
GeneChip, probe sets for each mRNA, including numerous housekeeping genes,
consist of eleven oligonucleotide probes selected to maximize specificity and to
have similar melting temperatures across the entire array.In contrast, microRNA
microarrays are often lower density spotted arrays. Our focus is on single color
microRNA microarray. This type of microarray is used predominantly in com-
parison to dual color arrays. Results from the Version 3.0 microRNA microarray
used in this study and its earlier versions have appeared in more than 40 publi-
cations. The Version 3.0 microarray contains 3790 probes spotted in duplicate.
The probes are 40 nucleotides in length, consisting of the genomic sequence
that has the mature microRNA sequence and additional flanking bases. With
the exception of six probes designed againstArabidopsis thaliana microRNAs,
the rest of the probes are derived from known and predicted human and mouse
microRNAs. This design allows for the detection of mature aswell as precursor
miRNAs and is particularly helpful in determining if computationally predicted
miRNAs are real. Although U6 snRNA is frequently used as a control for mi-
croRNA experiments, this noncoding RNA has been shown to vary as much as
five fold for equivalent amounts of total RNA by both microarray and North-
ern analysis (Hagan and Liu, unpublished observations). Hence, probes for U6
snRNA were not included in the Version 3.0 microarray. Most,if not all, com-
mercially available microRNA microarrays do not have controls for endogenous
RNAs that have been shown to be largely invariant between tissue samples.

Given the short length of miRNAs and the fact that far more mRNAs are
known than miRNAs, it is important to compare normalizationmethods specif-
ically for the miRNA microarray data. Although microRNA microarrays are
lower density spotted arrays than mRNA microarrays, they are not “boutique”
arrays. For example, microRNA arrays do not meet the following criteria: “more
than half the probes might be differentially expressed between any two samples
and that the differential expression might be predominately in one direction”
(Oshlack et al. 2007). We also do not expect global differences across miRNA
arrays. As an example, the biggest difference in miRNA expressions was ex-
pected between brain and heart tissues, we found only15% of miRNAs were
differentially expressed with a greater than 2 fold difference, when comparing
these distinct tissue types. Other examples include the referenced miRNA stud-
ies in cancer (Calin et al. 2005, Volinia et al. 2006, Yanaihara et al. 2006)
and tissue differentiation (Babak et al. 2004, Barad et al. 2004, Garzon et al.
2004) in Davison et al. (2006). For the three referenced cancer studies that used
microRNA microarrays, the number of differentially expressed microRNAs are
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13/245 (5.3%), 22/228−57/228 (9.6%−25.0%, range depends on which of six
tumor/normal comparisons were performed) and43/352 (12.2%). For the three
referenced differentiation studies, the number of differentially expressed mi-
croRNA are19/399 (4.8%), 25/154−35/154 (15.2%−22.7%, range depends on
the specific pairwise tissue comparison) and35/150− 57/150 (23.3%− 38.0%,
range depends on the specific pairwise tissue comparison). We can conclude
with confidence that much less than50% of miRNAs are differentially expressed
based on our experience and assessment of the literature. Inaddition to our cus-
tom microRNA microarrays, there are numerous commerciallyavailable miRNA
microarrays. For example, LC Sciences, Exiqon, Agilent, Invitrogen, and Am-
bion sell miRNA microarrays, with1564, 4000, 15000, 3000, and1224 miRNA
probes, respectively. Hence, the probe density of our arrayis similar to many cur-
rently available commercial platforms. Importantly, highthroughput sequencing
of microRNAs is rapidly expanding the number of known microRNAs. Hence,
our custom arrays soon will need to be updated with even more probes to reflect
the recently identified microRNAs. The microRNA registry (Version 10.1) cur-
rently has sequences for5395 miRNAs. Even though microRNA microarrays
are not ”boutique” arrays in general, a few cases exist wherelarge numbers of
microRNAs will be differentially expressed in only one direction. Knockouts
of essential microRNA biogenesis proteins such as Drosha, DGCR8, or Dicer1
lead to a dramatic reduction in steady state microRNA levelsby blocking pro-
duction of mature microRNAs (Kumar et al. 2007). These global downregula-
tion cases are exceptionally easy to detect by microarray asthe percentage of
microRNAs expressed above background is considerably different in compari-
son to controls. Other confirmed examples that show unidirectional microRNA
regulation are quite rare. Using a novel bead-based microRNA profiling system,
microRNAs were reported to be downregulated primarily in cancers (129 of 217
investigated). Almost all studies of microRNAs in cancer, including all the re-
search referenced in this manuscript, have found roughly balanced numbers or
a slight enrichment for upregulated microRNAs in cancer, casting doubt on the
conclusions of Lu et al. (2005). Even research that at first glance might seem
to support the conclusions of Lu and colleagues demonstrates unequivocally the
opposite. For example, Chang et al. (2008) reported that Mycexpression leads
to widespread repression of microRNAs. As their Supplemental Table 1 shows
for 313 human microRNAs investigated, 11 and 17 microRNAs are upregulated
and downregulated, respectively, at least two fold upon induced Myc expression.
Although vigilance must be exercised to make sure that the underlying assump-
tions are valid, the normalization methods that we present are compatible for the
vast majority of studies using microRNA microarrays.
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In this paper, we compare the performance of median, cyclic loess, quantile,
and no normalization for miRNA microarray data. The data included 72 mi-
croarrays obtained from RNA from 26 human and 10 mouse tissues that were
hybridized as techinal replicates. Hence, each RNA sample was hybridized to
two independent microarrays. Since replicate samples should, in theory, have al-
most identical values for expressions, one can compare different normalization
techniques in terms of the closeness of normalized measurements in the repli-
cated samples. Moreover, there are no confounding biological effects that come
from tissues from different individuals. The differences between these paired
expression levels with and without normalization can be divided into a bias and
variance components by expression level. Both of these miRNA-by-miRNA dif-
ferences components should be reduced after applying normalization methods.
We used these differences to provide direct evidence of the capability of each
method of reducing these two components. It was critical to examine the effects
on both quantities because the complexity of a transformation may increase the
error variance over and above its bias reduction. To resemble how normalization
is typically applied to samples, normalization was done globally across all 72
samples. This is an important distinction from normalizingeach of 36 replicate
pairs separately, where this level of normalization could produce artificially low
variance and bias.

Section 2 describes the normalization methods in detail. Section 3 describes
the miRNA data used in this paper. Section 4 compares normalization methods.

2 Normalization Methods

Three commonly used normalization techniques are reviewed. Suppose that we
have the (log base 2 transformed) probe level expression values fromp miRNAs
andn arrays in ap × n matrixX.

Median normalization shifts miRNAs expressions on each array by additive
constants so that the medians of miRNAs expressions are the same across arrays
by the following steps:

• Take the median of each column ofX and generate an-dimensional me-
dian vectorM ;

• Calculate the overall median of the vectorM ;

• Shift miRNAs expression values of each array by subtractingthe differ-
ence between the median of each array and the overall median from them.
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Instead of matching the median only across the arrays,Quantile normaliza-
tion makes the distributions of expression levels the same across arrays by the
following steps:

• Sort each column ofX separately to generate a sortedp × n matrixY;

• Take the mean of each row ofY and generate ap-dimensional vectorAb,
called the baseline array;

• Get the normalized miRNAs expressions for each array by rearranging the
baseline arrayAb to have the same ordering of the corresponding column
of the matrixX so that empirical distributions of miRNA expressions are
the same as that of the baseline array across arrays.

Cyclic loessconsiders the MA plot of probe intensities from every pair of
arrays(Xij, Xij′), with fixed j 6= j′ andi = 1, 2, ..., p, and makes the M and A
pairs scattered around theM = 0 axis by the following steps:

• ComputeMi = Xij − Xij′ andAi = 1
2
(Xij + Xij′);

• Fit a loess curve by regressionM on A, and denoted the fitted vector by
M̂ ;

• Setting the vectorD = (M − M̂)/2, get the normalized miRNAs expres-
sions for(Xij, Xij′) by modifyingXij to Xij + Di andXij′ to Xij − Di,
i = 1, 2, ..., p.

3 Description of Data

Total RNA was purchased from Ambion Inc. Microarray labeling and hybridiza-
tion were performed as previously described in Liu et al. (2004), except for
the exceptions noted below. The Ohio State University Comprehensive Can-
cer Center Version 3.0 microRNA microarray was used and thisarray contains
3790 oligo probes derived from 578 mature miRNAs spotted in duplicate (329
Homo sapiens, and 249 Mus musculus) that are annotated in themiRNA reg-
istry http://microrna.sanger.ac.uk/ sequences/ (Accessed Nov. 2005). Of the 396
evolutionarily conserved mature microRNAs between mice and human in Ver-
sion 10.1 of the microRNA registry,68% are identical in length and sequence.
Hence, many of the mouse probes serve as additional controlsfor their human
counterparts and vice versa. In addition, 1493 human and 1137 mouse oligo
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probes for miRNAs computationally predicted in human and mouse, respec-
tively, are also spotted in duplicate. Often, more than one probe set exists for a
given mature miRNA. Additionally, there are duplicate probe spots correspond-
ing to most precursor miRNAs. Hybridization signals were ultimately detected
with Streptavidin-Alexa 647, conjugate and scanned images(Axon 4000B) were
quantified using the Genepix 6.0 software through a local background correction
(Axon Instruments, Sunnyvale, CA).

4 Analysis

Background-corrected median signals for duplicate probeson an array were av-
eraged. After normalization across all 72 arrays, letXi be the log base2 trans-
formed expression value of theith miRNA for a certain tissue, and letYi be the
log base2 transformed expression value of theith miRNA for the replicate of
the tissue.

Bias. The averageAi = (Xi + Yi)/2 and the differenceMi = Xi − Yi of
expression values for each miRNA can then be computed. The MAplot of the
two vectorsXi andYi is a 45-degree rotation and axis scaling of their scatter
plot. This plot is particularly useful for array data because Mi represents the
log fold change andAi represents the average log intensity for theith miRNA.
When the loess curves of the MA plot deviate from the horizontal line atM = 0
, this demonstrates differences in the intensity levels between two arrays from
the same tissue (Gentleman et al. 2005). In contrast, if the loess curves align
with M = 0, the normalization method is considered to exhibit little bias at all
levels of expression. When MA plots and loess curves were made for the repli-
cate array data from human brain tissue using no normalization, median normal-
ization, quantile normalization and cyclic loess, we observed that the quantile
normalization method removed bias the best (Figure 1C), theloess curve closely
followed the horizontal line atM = 0. No normalization, median normalization
and cyclic loess behaved similarly in that their loess curves are not aligning with
M = 0 closely enough (Figure 1A, 1B and 1D).

Binning. To compare the normalization methods in how much they reduced
error variance in addition to reducing bias, we formally modeled the mean and
variance of differences in replicate arrays as a function oftheir expression lev-
els. In order to obtain reliable estimates of the expressionlevels, we binned
duplicates according to their average expression level first and then proceeded
by modeling the mean and variance based on the binned data.

We created equally-sized bins containing34 miRNAs probes. For each bin,
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Figure 1: MA and loess plot of expression values for the humanbrain tissue
data. A) without normalization, B) after median normalization, C) after quantile
normalization and D) after cyclic loess.

we summarized the differences in the replicate arrays by median absolute devi-
ation (MAD) of the differences and median of the differencesto obtain robust
estimates of variance and bias, respectively (Lin et al. 2002). The smoothed
MADs and medians of the differences were used to detect systematic effects due
to the different normalization methods as a function of expression levels. Lower
values of smoothed MADs and smoothed medians closer to zero across average
expressions correspond to a superior normalization method.

As stated above, each bin consisted of34 miRNAs probes. For fixedk
(1 ≤ k ≤ K) , let X(i)k (i = 1, 2, ..., 34) be the expression value of theith
miRNA in thekth bin for a specific tissue, and letY(i)k (i = 1, 2, ..., 34) be the
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expression value of theith miRNA in thekth bin for the replicate of the tissue.
The difference between the replicate arrays expression values for each miRNA
in thekth bin can be denoted byD(i)k = X(i)k − Y(i)k (i = 1, 2, ..., 34), and the
corresponding observations byd(i)k. We assume that for fixedk,

D(i)k
i.i.d.
∼ N(µk, σ

2
k) i = 1, 2, ..., 34

and use
mdk = median

1≤i≤34
(d(i)k)

as a robust location (center) estimate ofµk = E[D(1)k] , and

MADdk = median
1≤i≤34

|d(i)k − median
1≤i≤34

(d(i)k)|,

as a robust estimate of scale (spread), which is proportional to σk =
√

var[D(1)k]
under normality.

For the average expression values of miRNAs in thekth bin across certain
tissue replicates, letA(i)k = (X(i)k + Y(i)k)/2 (i = 1, 2, ..., 34) anda(i)k be the
ith observation. Similarly, for estimation of the center of the average expression
values in each bin, we consider

mak = median
1≤i≤34

(a(i)k).

As Figure 1A suggests, it is sensible to modelµk andσk as a function of the
center of the average expression values of miRNA replicatesin thekth bin.

For the paired observations(ma1, md1), (ma2, md2), ..., (maK , mdK), we
modeled the median difference as a smooth function of the median average

mdk = η(mak) + ǫk, k = 1, 2, ..., K

with ǫk ∼ N(0, σ2
m,k) and with a different variance for each bin. The smoothed

relationshipη was obtained by the weighted smoothing spline with weights equal
to the reciprocal of the squared MAD of difference. Quantilenormalization gave
the best results when comparing the weighted smoothed curves for the median
difference in expression values using the human brain tissue data (Figure2).

Similarly, for the paired observations(ma1, MADd1), (ma2, MADd2), ...,
(maK , MADdK), we considered the following model with unequal variance

MADdk = ξ(mak) + ǫk, k = 1, 2, ..., K
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Figure 2: weighted smoothed medians of difference of expression values for the
human brain tissue data. A) without normalization, B) aftermedian normaliza-
tion, C) after quantile normalization and D) after cyclic loess.

andǫk ∼ N(0, σ2
MAD). The smoothed MAD of differencesξ can again be ob-

tained by smoothing splines with the smoothing parameter selected by general-
ized maximum likelihood (GML) (Gu 2002). It was difficult to see differences
in the relationship betweenMADd andma among the normalization methods
(Figure3), but they became more apparent if the bias and variance werecom-
bined into a mean-squared error statistic.

Confidence intervals. The fitted medians of differencesη is the smoothed
estimate of bias parameterµk, and the fitted MAD of differencesξ is the smoothed
estimate of scale parameter. We used the fitted MAD to estimate confidence in-
tervals around bias and obtained a pointwise confidence interval for the bias by
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Figure 3: smoothed MADs versus median averages for the humanbrain tissue
data. A) without normalization, B) after median normalization, C) after quantile
normalization and D) after cyclic loess.

binned expression values as

η̂(mak) ±
3.98√

34
ξ̂(mak),

(see Hoaglin et al. 2000). The confidence band after quantilenormalization
encompasses the horizontal line atM = 0, while those using no normalization,
median normalization or cyclic loess do not include zero forlarger expression
values (Figure 4).

Mean Squared Error. We obtained the mean squared error (MSE) of the
difference in expression values (including variance and squared bias)

MSEk = E[D2
(1)k] = var[D(1)k] + E[D(1)k]

2 = σ2
k + µ2

k,
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Figure 4: confidence band of the bias for the human brain tissue data. A) without
normalization, B) after median normalization, C) after quantile normalization
and D) after cyclic loess.

which can be estimated by the smoothed estimates

[
ξ̂(mak)

0.6745
]2 + η̂(mak)

2,

(see Huber 2003). The estimated MSE for quantile normalization is smallest
when average expression values are greater than noise levels of measurements,
and the estimated MSE for cyclic loess is slightly larger than that of quantile
normalization across all average expression values. Median normalization per-
formed similarly to no normalization (Figure 5).

To evaluate the global bias and variance for each method, we averaged MSEs
across expression levels greater than4.5; the value4.5 (log base 2 transformed)
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Figure 5: MSE curves without normalization (black, solid line), after median
normalization (green, dashed line), and after quantile normalization (red, dot-
dashed line) after cyclic loess (blue, dotted line).

was selected because95% of the blanks (spots lacking oligonucleotide probes)
gave intensities less than this value. The average MSEs for no normalization,
median normalization, quantile normalization and cyclic loess using the brain
tissue data were 0.278, 0.274, 0.225, 0.270 respectively. These results were
found consistently across the other 35 tissue types (Figure6), where the MSEs
were lower for quantile normalization (coded 2) in almost all tissue samples
compared to no normalization (coded 0), median normalization (coded 1) and
cyclic loess (coded 3), except for human lung, human liver, human thymus,
mouse liver and mouse lung. When the normalization methods were applied
to each tissue type separately, instead of to all 72 arrays together, the results
were similar.

Checking for Scale Compression.It is possible that the superior results for
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Figure 6: mean of MSEs for the difference in expression values without normal-
ization (0 and black), after median normalization (1 and green), after quantile
normalization (2 and red) and after cyclic loess (3 and blue).

quantile normalization is the result of the compression of the scale downward
after transformation. To check this, we first calculated coefficients of varia-
tion (CV) as the ratio of an estimate of the standard deviation of measurement
(
√

MSE) for each bin to the mean expression for that bin and then average the
ratios across bins. We found the CVs followed the same pattern as the MSEs,
that is, typically lower values for quantile normalizationacross tissues (Figure
7). It is also possible that the superior results for quantile normalization is the
result of compressing the scale from both ends after transformation; thereby re-
ducing spread and sensitivity of transformed measurements. To check this, we
calculated the average variance of expression levels across the36 tissues for each
miRNA. This variance consists of true variance across tissues and measurement
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error as obtained with the MSE. Averaging the variance across miRNAs and the
MSEs across tissues, we found the ratios of signal (true) variance to noise (mea-
surement error) variance were12.0, 14.0, 16.3 and16.3 for no, median, quantile
and cyclic loess normalization respectively.
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Figure 7: mean of CVs for the difference in expression valueswithout normal-
ization (0 and black), after median normalization (1 and green), after quantile
normalization (2 and red) and after cyclic loess (3 and blue).

Comparative StudyWe compare real-time RT-PCR miRNA data (Lee et al.
2008) with our microarry miRNA data, since twenty-one tissues were common
to both datasets. Specifically, we focused on brain and heart, since these tissues
are quite biologically distinct and have substantial differences in their miRNA
expression profiles. If a normalization technique was overly aggressive, then
there would be an ”averaging-out” effect, leading to a significant decrease in the
number of differentially expressed miRNAs. A well known difference between
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microarray and RT-PCR data is that the fold changes observedby microarray
tend to be compressed in comparison with fold changes observed by RT-PCR.
We found51 miRNAs were characterized by a four fold difference in expression
by RT-PCR. For the microarray data on identical miRNAs, we found that36,
35, 35, 35 miRNAs were two fold differentially expressed for no, median, cyclic
loess and quantile normalization respectively. This set ofmiRNAs was found to
have roughly an70% overlap with the RT-PCR data. The observed values for
fold changes varied little with respect to the normalization method used. In this
respect, we could not conclude any superior normalization method based strictly
on this analysis, but we could at least conclude that quantile normalization is not
worse than other methods in terms of its sensitivity.

5 Conclusion

We showed that the quantile normalization method works bestin reducing dif-
ferences in miRNA expression values for duplicate tissue samples, cyclic loess
works slightly worse than quantile normalization, whereasno normalization and
median normalization behave similarly and seem to be inferior to quantile nor-
malization and cyclic loess with regard to bias. This is not surprising because
quantile normalization adjusted better for differential bias across the scale of
expression values. By showing that the total MSE was lower across almost all
36 tissue samples, we were assured that the bias correction provided by quan-
tile normalization was not outweighed by additional error variance that can arise
from a more complex normalization method. Furthermore, we showed that quan-
tile normalization does not achieve smaller replication error by compressing the
scale downward or by compressing the scale from both ends.
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