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ABSTRACT

Motivation: Microarray normalization is a fundamental step in
removing systematic bias and noise variability caused by technical
and experimental artefacts. Several approaches, suitable for large-
scale genome arrays, have been proposed and shown to be effective
in the reduction of systematic errors. Most of these methodologies
are based on specific assumptions that are reasonable for whole-
genome arrays, but possibly unsuitable for small microRNA (miRNA)
platforms. In this work, we propose a novel normalization (loessM),
and we investigate, through simulated and real datasets, the
influence that normalizations for two-colour miRNA arrays have on
the identification of differentially expressed genes.
Results: We show that normalizations usually applied to large-scale
arrays, in several cases, modify the actual structure of miRNA data,
leading to large portions of false positives and false negatives.
Nevertheless, loessM is able to outperform other techniques in
most experimental scenarios. Moreover, when usual assumptions
on differential expression distribution are missed, channel effect has
a strikingly negative influence on small arrays, bias that cannot be
removed by normalizations but rather by an appropriate experimental
design. We find that the combination of loessM with eCADS,
an experimental design based on biological replicates dye-swap
recently proposed for channel-effect reduction, gives better results in
most of the experimental conditions in terms of specificity/sensitivity
both on simulated and real data.
Availability: LoessM R function is freely available at http://gefu.cribi
.unipd.it/papers/miRNA-simulation/
Contact: chiara.romualdi@unipd.it
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate
the expression of target mRNAs. Although thousands of miRNAs
have been identified, only few have been functionally linked to
specific biological pathways. Microarray-based expression analysis
is an ideal strategy for identifying candidate miRNAs correlating
with biological pathways and for generating molecular signatures of
disease states. For systematic investigation of miRNA expression,
oligonucleotide-based microarrays for miRNAs have been recently

∗To whom correspondence should be addressed.

developed (Liu et al., 2004) and several commercial platforms are
now available.

Data normalization has been revealed as a crucial step to reduce
possible systematic errors that, if ignored, will bias final results.
Several approaches have shown to be effective in the reduction
of systematic errors, for a comprehensive review see Quackenbush
(2001), Bilban et al. (2002), Smyth and Speed (2003) and Leung and
Cavalieri (2003). Many methodologies currently used for mRNA
microarrays are directly applicable to miRNA arrays, in particular,
loess and global normalizations (but sometimes preprocessing is
missed) seem to be preferred among others. However, there are
specific characteristics of miRNA data that should be considered
when choosing the appropriate method of analysis.

Most of these methods are based on two assumptions: (i)
only a small portion of spots is differentially expressed, and
(ii) differentially expressed spots are homogeneously distributed
between over- and under-expressed. These assumptions, reasonable
for large-scale genome arrays, could fail for miRNA platforms that,
like custom arrays, are printed with a relatively small number of
selected probes. Experiments on two samples with most of miRNA
differentially expressed, predominately in one direction, are not
unusual. In such situations, it is still difficult to decide which method
uniformly outperforms in different experimental conditions.

Recently, Rao et al. (2008) compare the performance of several
normalizations on miRNA microarrays based on single channel
technology, showing a better performance of quantile normalization.
They use technical replicates in order to evaluate the reduction
of the difference in miRNA expression values between duplicate
samples. However, normalization techniques could have a profound
effect on subsequent analyses, such as differential expression
testing, as demonstrated by Hoffmann et al. (2002), for single
channel and by Chiogna et al. (2009), for dual channel mRNA
microarray technology. Based on this consideration, Pradervand
et al. (2009) compare specificity and sensitivity of miRNA
normalizations for single channel technology using a set of true
positive genes, confirming the goodness of quantile and proposing a
glog transformation based on invariant set of miRNAs. Similarly,
the work of Hua et al. (2008) is focused on the comparison of
preprocessing techniques for two-channel technology taking into
consideration the identification of differentially expressed genes
(DEGs). They use RT-PCR expression quantification of eight genes
to compare normalizations: the higher the correlation with RT-PCR
values, the better the normalization. They demonstrate that print-tip
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loess (P-loess) performs slightly better than the others. However, in a
similar study, Sarkar et al. (2009) do not find significant differences
between P-loess and other normalizations, proposing an alternative
transformation based on glog.

In this work, we propose a novel normalization procedure, called
loessM, based on the loess algorithm. LoessM scales expression data
on the global median expression rather than on zero, as usually done
for whole-genome arrays. This modification relaxes the assumption
of symmetry among up- and down-regulated genes. Moreover, we
compare and evaluate the impact that different normalizations for
two-channel microarray have on the identification of DEGs. We
find, on simulated and real data, that loessM, in case of absence of
channel effect (different efficiency in the fluorophores incorporation
in the labelling protocol), shows better performances, especially in
the most extreme experimental cases.

Moreover, our analysis underlines the profound negative influence
that channel-effect bias has on miRNA arrays. When usual
assumptions on differential expression distribution fail, channel
bias can be removed not by normalizations, rather by a specific
experimental design. Here, we show that the combination of loessM
and eCADS—a recently proposed biological replicates dye-swap
design (Dabney and Storey, 2007)—is able to maintain the correct
structure of expression data, showing better performance among
most of the compared preprocessing procedures.

2 METHODS

2.1 Simulation models
Hereafter, we will note the log transformation of Cy3/Cy5 as M and the log
transformation of the squared root of Cy3*Cy5 as A (as used in the MA-plot).

2.1.1 Hierarchical models We considered the two mixture models
proposed by Kendziorski et al. (2003) (see Section 1 in Supplementary
Material). In the first model, Gamma–Gamma (GG), the intensities for the
replicates in both conditions (Cy3 and Cy5) are assumed to be independently
generated from Gamma distributions with a constant shape parameter α and
gene-specific random scales λg, assumed to have a Gamma distribution with
shape hyperparameter α0 and scale hyperparameter ν. In the second model,
lognormal-normal (LNN), the log intensities are assumed to be normally
distributed, with constant variance σ2 and gene-specific random means µg,
that are themselves normally distributed with hyperparameters µ0 and τ.

Hierarchical models GG and LNN simulate datasets without intensity-
dependent systematic bias, a common situation in microarray data. Thus, we
decided to introduce a systematic bias effect obtained through the addition
(to the log-ratio simulated by GG and LNN) of a component inversely
proportional to A, opportunely scaled.

2.1.2 Balagurunathan’s model Balagurunathan et al. (2002) procedure
(BAM, hereafter) models two distinct fluorescent intensities, one for each
channel, based on the same true gene-specific signal.

The true intensity signal (Ig) for each gene g is assumed to be
generated from an exponential distribution with a constant parameter λ. The
fluorescence of each channel is then generated from a Normal density with
gene-specific mean Ig and gene-channel-specific SD αg,k Ig, where αg,k is the
predetermined coefficient of variation of gene g in channel k. The subsets
of genes assumed to be differentially expressed are then transformed by
adding to the log-intensity ratio a random quantity bg, generated from a Beta
distribution with constant parameters.

The authors introduced a flexible family of functions that models most
of the possible channel biases and in our work, we considered two sets of
parameters, corresponding to an experiment with no channel effect and to an

experiment with strong unbalanced channel intensity, following suggestions
in Balagurunathan et al. (2002).

2.1.3 Simulation Plan For each model and set of parameters, we
simulated 10 matrices with 1000 gene expression levels on 15 experiments,
separately for the Cy5 and Cy3 channels. Thus, each simulated matrix
consisted of 1000×30 values. Simulated matrices were generated in order
to take in consideration different types of expression scenarios: (i) we
increased the proportion of DEGs; (ii) we increased the asymmetry of
the expression distribution; and (iii) we combined asymmetry and large
amount of DEGs. Then, we considered the following situations (the first
number is referred to the percentage of down-regulated and the second to the
percentage up-regulated genes): 0–6 %, 0–20 %, 0–40 %, 10–30%, 10–40%
and 20–20%.

When channel effect was introduced in BAM model, matrices were
generated in order to consider two different scenarios: (i) channel effect in
the same direction of differential expression, e.g. Cy3 more efficient in the
labelling step jointly with 20% up-regulated and 0% down-regulated genes,
and (ii) channel effect in the opposite direction of differential expression, e.g.
Cy5 more efficient in the labelling step jointly with 20% up-regulated and
0% down-regulated genes. In the first condition, channel effect overdraws
differential expression, while in the second one it hides gene deregulation.
However, changing the direction of channel effect is equivalent to fix
channel effect and change differential expression direction. Then, in case
of BAM model, we considered Cy3 as more efficient and simulated the
above differential situations and their opposite.

At the end of the preprocessing, for each simulation we had 10 different
matrices, on each of which SAM analysis was performed (Tusher et al.,
2001). Receiver operating characteristic (ROC) curves were obtained
calculating sensitivity and specificity for top ranking genes from 10 to 600
steps by 20. Then, average sensitivity and specificity were calculated.

2.2 Real data
Normalization performances on real datasets have been compared using:
(i) correlation with RT-PCR, spike-in and control data, whenever available
and, (ii) specificity and sensitivity of the statistical test using true positives
features.

We used the following datasets: (i) three large-scale cDNA datasets (Baird
et al., 2005; De Pitta et al., 2005, 2006), datasets A, B and C, appropriately
modified in order to know a priori the true positives, (ii) one large-scale
small oligos dataset (dataset D) with true positives obtained through RT-
PCR (Patterson et al., 2006), (iii) one miRNA (dataset E) (Sarkar et al.,
2009) with RT-PCR validation and spike-in controls and (iv) one miRNA
(dataset F) (Wang et al., 2007), where true positives were unknown.

Except for dataset E, kindly provided by the authors, all the remaining
datasets are publicly available at the GEO database. For more details on
these datasets, see Section 2 in Supplementary Material.

2.2.1 Evaluation criteria for datasets A, B and C Modification of real
datasets A, B and C is essentially based on a selection of genes from a large-
scale array, so as to reproduce miRNA arrays characteristics, maintaining the
complex expression data structure typical of microarrays. The procedure for
data modification is summarized in the following steps: (i) normalize each
dataset (A, B and C) with loess procedure; (ii) mark the features found to
be differentially expressed after SAM test (False Discovery Rate, FDR = 0)
as deregulated; (iii) randomly sample 1000 features from the whole dataset
in order to have the desired percentage of up- and down-regulated features
(see Section 2.1.3 for details), and consider their raw expression values for
subsequent analyses; (iv) repeat Step (iii) 10 times. On these matrices, we
proceed as described for simulated data (See Section 2.1.3).

The use of loess normalization previous to SAM analysis (in Step i) should
not advantage loess-type normalization performances. It is used just to avoid
the selection of a higher number of false positives, that surely would be
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identified if raw data were considered; the subsequent random selection of
genes from the whole dataset should balance the possible advantage.

As in real datasets channel-effect direction is fixed and unknown, we use
the following conditions : 0–6%, 0–20%, 0–40%, 10–30%, 10–40% and
20–20% and vice versa.

2.2.2 Evaluation criteria for dataset D Dataset D provides a list of true
positive genes obtained by means of TaqMan RT-PCR. Agilent platform
has been selected because of the similarity between oligonucleotides and
miRNA probes length. This similarity should give expression values more
reliable than in the previous cases. RT-PCR defined our true positives:
481 true over-expressed and 350 true under-expressed. Thus, we simulated
asymmetrical differential distribution selecting separately true over- or
under-expressed genes and then randomly selecting from the remaining
expression values in order to reach a total number of 1000 probes. Thus,
we had three different scenarios: (i) asymmetrical over-expression (48%),
(ii) asymmetrical under-expression (35%) and (iii) symmetrical differential
expression distribution. Finally, we used dye-swap experiments to evaluate
eCADS design. ROC curves and correlation between expression values
obtained through microrrays and RT-PCR (Patterson et al., 2006) were used
to compare normalizations performances.

2.2.3 Evaluation criteria for dataset E Dataset E is characterized by
an experimental plan specifically designed for quality control check. The
authors constructed a synthetic universal miRNA reference (pool of 480
chemically synthesized miRNAs corresponding to all known human miRNA
probes present on the microarray), optimized to provide relatively uniform
level of intensity in the green channel. The expected real median Cy3
intensity is 12 (log transformation) [see Supplementary file 1 of Sarkar
et al. (2009) for details]. Then, Cy3 intensity distribution across experiments,
correlation coefficients with spike-in controls and proportion of true
positive genes (by RT-PCR) identified were used to compare normalization
performances.

2.2.4 Evaluation criteria for dataset F Dataset F (Wang et al., 2007)
does not have external gene validation, thus we decided to use two
different strategies to compare normalizations: (i) intensity distribution of
negative controls, empty spots, that are supposed to have an expression
distribution homogeneously distributed around zero and characterized by
small variability and (ii) literature evidences on the list of DEGs identified
after normalizations.

Wang et al. (2007) performed filtering and global normalization on raw
data; then, they identified as DEGs those genes resulted to be significant
with both SAM and t-test. We considered only genes differentially expressed
across all samples, without group distinction [as reported in supplementary
table in Wang et al. (2007)]. Then, in order to compare our results with those
of Wang et al., we applied their filtering procedure before the preprocessing
technique and we adopted both SAM and t-test for the gene list comparison.

2.3 Biological replicates dye-swap: eCADS
Dabney and Storey (2007) developed a procedure, named eCADS, that
accounts for dye bias through the combination of experimental design and
statistical test. Their experimental design requires only a single array per
sample pair instead of technical replicates. In this work, we used only eCADS
experimental design without taking into account the statistical test, fANOVA,
proposed in Dabney and Storey (2007).

For BAM model, we evaluated eCADS by applying a channel effect
in one direction (i.e. Cy5 more efficient) for the first eight experiments
(columns), and in the other direction (i.e. Cy3 more efficient) for the other
seven experiments.

De Pitta et al. (2005, 2006) and Patterson et al. (2006) applied a technical
replicates dye-swap design in their study. Then, for datasets A, B and D, we
were able to evaluate eCADS design: half of the experiments were chosen

with reference marked with Cy5 and sample with Cy3 and half with inverted
labelling.

Unfortunately, datasets C, E and F did not perform dye-swap replicates.
In these cases, in the DEGs list comparison, we assumed the absence of a
channel effect.

2.4 A new normalization technique
Loess normalization and its variants (Futschik and Crompton, 2004, 2005;
Yang et al., 2002) rely on the use of a non-linear regression technique
(the widely used loess, LOcally WEighted Scatterplot Smoothing) based
on robust local regression of the log ratios Cy3/Cy5 on overall spot intensity
Cy3*Cy5 (the loess smoother for the so called MA-plots). If (R,G) are the
fluorescence intensity pairs for each gene on each array (where R = red for
Cy5 and G = green for Cy3), loess normalization assumes that the red and
green intensities are related by a factor dependent from A:

log2(R/G)→ log2(R/G)−c(A)→ log2(R/k(A)G),

where c(A) is the loess fit to the MA-plot. Then, loess and its modification
assume that (i) the majority of genes are equally expressed and (ii) the
distribution of the log-intensity ratio of deregulated genes is roughly
symmetric about zero (Yang et al., 2002). If assumptions (i) and (ii) do not
hold, e.g. most of the features are over-expressed, the factor c(A) erroneously
scales expression data towards zero, increasing the false positive rate among
under-expressed and the false negatives among over-expressed.

Here, we propose a modification of the factor c(A), c∗(A), which scales
expression values towards the general median expression values. That is:

c∗(A)=c(A)−Med(M),

log2(R/G)→ log2(R/G)−c∗(A),

where Med(M) is the median of M on the microarray experiment. We call
this modification loessM.

Then, we compare sensitivity and specificity performance of SAM test
after global (Quackenbush, 2001), loess and P-loess, (applied only on the real
datasets) (Yang et al., 2002), glog (Huber et al., 2002; Rocke and Durbin,
2003), q-spline (Workman et al., 2002), generalized procrustes analysis
(GPA); (Xiong et al., 2008), loessM and the combination of loessM and
GPA. Since OLIN and OSLIN normalizations (Futschik and Crompton,
2005) performances have been demonstrated to be highly similar to that
of loess (Chiogna et al., 2009), we decide to exclude them from the analysis.

The glog normalization is known to be affected by a large number of
DEGs all in the same direction (Huber et al., 2003). Huber and colleagues
(2003), in fact, introduced a parameter (qlts) that, excluding outliers from
parameter estimation, should make glog a more robust procedure. In this
study, we consider the most robust case (qlts =0.5), as it gave the best results
(data not shown).

Statistical analyses have been performed with R using packages Biobase,
limma, marray, affy, vsn, vegan and samr. For the GPA, we used the original
script kindly provided by the authors.

3 RESULTS AND DISCUSSION
In this study, we evaluate the impact that normalizations have
on the identification of DEGs in miRNA arrays with two-channel
technology. The widely used techniques for genome-wide arrays
are typically based on at least two main assumptions: (1) small
proportion of DEGs and (2) symmetrical distribution of DEGs
between over-and under-expressed. In small arrays these two
assumptions can be easily missed. Here, we present a novel intra-
array normalization, loessM (free of assumptions 1 and 2) that
combined with GPA—an assumption-free inter-array normalization
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(Xiong et al., 2008)—shows better results when these assumptions
are relaxed. However, in these cases, channel bias cannot be removed
by normalization, but rather by an appropriate experimental design.
To this aim, we show how assumption-free normalizations with
eCADS design (Dabney and Storey, 2007) allow an effective
channel-bias reduction. In the following, we report the performance
of the selected normalizations among which raw data (no
normalization) are included. In simulated data, raw data performance
is often comparable with those derived by the better techniques,
however, this result is not unexpected. Simulated data have been
generated in order to have channel bias highly exceeding intensity-
dependent bias (see Supplementary Fig. S11). Thus, in case that
assumptions 1 and 2 are relaxed, even raw data are able to
correctly identify most of DEGs. Confirming our consideration, in
real datasets, raw data perform well only in cases where channel
effect is in the same direction of differential expression. However,
raw data are not the point of our study, real data are usually
noisier than simulated ones; the point is that, in these cases, the
usual normalizations strongly alter data structure hiding differential
expression.

Simulation results—data without channel bias: normalization
comparison for GG, LNN and BAM model without channel effect
inclusion are quite similar and reported in Supplementary Figures S1
and S2. Normalizations seem to perform similarly in case of (i)
small portion of DEGs with totally asymmetric distribution (0–
6%, Supplementary Figs S1D, J and S2A) and (ii) large portion of
DEGs, symmetrically distributed between up-and down-regulated
(20–20%, Supplementary Figs S1E, K and S2F). However, with the
increasing degree of asymmetry, differences among normalizations
become stronger (Figs S1B, H and S2B–E): q-spline, global and
loess perform worse than the other methodologies. In the most
extreme asymmetrical cases (Supplementary Figs S1F and S2B–
E), loessM, GPA and loessM with GPA show the best performance.
In LNN model (Fig. S1L), GPA and glog transformation perform
at best. This result is not unexpected, since LNN model is
basically the model behind the glog normalization (see Section 3
in Supplementary Material).

Simulation results—data with channel bias: dye bias is a
systematic difference between the incorporation rates of the
fluorescent dyes used for labelling targets. In particular, up-or
down-regulated miRNAs are systematically increased or decreased
according to the Cy5 or Cy3 differential incorporation. When
usual assumptions on differential expression distribution are missed,
channel effect cannot be removed by the normalizations and
differential expression can be hidden or overdrawn. In fact,
when channel effect is introduced in BAM model (Fig. 1 and
Supplementary Fig. S3) normalization performances markedly
change according to the direction of both effects, as expected.
When differential expression is in the same direction of channel
bias (differential expression amplification), loessM, GPAand loessM
combined with GPA strikingly outperform other normalizations
(Fig. 1 A, C and Supplementary Fig. S3); otherwise, when
differential expression is in the opposite direction of channel bias
(Fig. 1 E, G and Supplementary Fig. S3) (differential expression
masked), loess and global increase their performances. In the case of
channel effect in the same direction of differential expression, in fact,
normalizations assuming differential expression distribution centred
around zero, erroneously shift data towards zero, missing most of
the up-regulated features and introducing several false positives

among down-regulated ones. On the other hand, if channel effect
and differential expression are in the opposite directions with a
small portion of deregulation, loessM and GPA erroneously capture
channel-dependent effects instead of differential expression. Note
that channel effect and differential expression directions are a priori
unknown and cannot be distinguished by normalizations, but rather
by a specific experimental design.

Simulation results—data with channel bias and eCADS design:
Dabney and Storey (2007) develop a procedure, named eCADS,
which needs only a single array per sample pair, using biological
replicates, instead of technical replicates to account for dye bias.
Taking advantage of their results, we simulate data following
eCADS design (see Section 2 for details). Figure 1 and
Supplementary Figure S3 show the results. It is immediately evident
how eCADS leads to more concordant results among normalization
performances in the two scenarios: channel effect and differential
expression in the same and in the opposite direction. In particular,
with eCADS design, loessM improves performance becoming the
best normalization across most of the simulated conditions (Fig. 1B,
D, H, J and Supplementary Fig. S3).

Real data results—dataset A, B and C: results obtained using
modification of large-scale real datasets are in agreement with
those obtained through simulated ones (Fig. 2 and Supplementary
Figs S4–S9). The presence of channel effects in these datasets is
even more evident than in simulated data, especially for dataset
B. While in datasets A and B, GPA and glog outperform the other
techniques, in case of channel effect and deregulation in the opposite
direction (Fig. 2A and Supplementary Figs S4 and S6), loessM and
loessM plus GPA are the best normalizations in the opposite scenario
(Fig. 2B, Supplementary Figs S4J and S6). In dataset C, on the
contrary, the difference between both conditions is much less evident
(Supplementary Fig. S8), suggesting a reduced channel effect in
dataset C, and loessM and loessM plus GPA always outperform the
other normalizations.

Fortunately, for datasets A and B, the authors applied a classical
dye-swap experimental design; thus, for these datasets, we try to
evaluate the impact that eCADS design has on the reduction of
channel effect. Figures 2, Supplementary Figs S5 and S7 show the
results obtained through eCADS design for datasets A and B. Using
eCADS design, dataset A shows more homogeneous results; loessM
and GPA improve performance becoming the best normalizations
in most of the experimental conditions (Fig. 2C, Supplementary
Fig. S5). In particular, in case of strong differential unbalance
(Supplementary Fig. S5), loessM plus GPA outperforms the other
techniques, while in cases of 20–20% and 0–6% there seem to be
no significant differences among normalizations. However, results
for dataset B remain slightly different (Supplementary Fig. S7).
This result confirms the strong channel effect that characterizes
these experiments, effect that probably cannot be removed, but only
partially reduced by eCADS.

Real data results—dataset D: dataset D, characterized by short
oligo lengths, shows the same specificity and sensitivity trend
(Fig. 2). When an asymmetric distribution is simulated (35%
of under-expressed genes), we observe different normalization
performances according to the direction of the bias (Fig. 2D, E
and Supplementary Fig. S9). However, using eCADS design, GPA,
loessM and the combination of both show performances superior
than those of the other normalizations (Fig. 2F and Supplementary
Fig. S9). This is in agreement with previous datasets results. In
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Fig. 1. Specificity and sensitivity trend for BAM model with channel-effect bias with and without eCADS design. Simulated matrices were generated
considering channel effect and differential expression effect in the same (A–D) and in the opposite direction (E–H). Hereafter we indicate with the symbol
‘+’ when both effect are in the same direction and ‘−’ otherwise. Matrices are characterized by (numbers represent, respectively, proportion of down-and
up-regulated features): 0–6% [(A) for ‘+’ (E) for ‘&#8722;’], 10–40% [(C) for ‘+’ (G) for ‘–’], 20–20% (I). With eCADS design: 0–6% [(B) for ‘+’ (F) for
‘&#8722;’], 10–40% [(D) for ‘+’ (H) for ‘&#8722;’], 20–20% (J). See Supplementary Figure S3 for the remaining 0–20%, 0–40%, 10–30% panels.

addition, we calculate the correlation between microarray and RT-
PCR values (see Supplementary Table S1). The combination of
loessM and GPA shows the highest correlation coefficient (r = 0.81).

Real data results—dataset E: miRNA dataset E was specifically
designed by the Authors to have green channel intensity to be
used as quality control check. Thus, to verify the normalization
performances, we compare the distribution of the median green
channel intensities: the closer to the expected real median (given by
the composition of the reference pool), the better the normalization.
Figure 3A shows the median distribution after all the normalizations
across the 29 experiments. It is evident that GPA, loessM and
loessM+GPA show the closest green channel median to the expected
one (black dotted line). Dataset E comprises also a series of spike-
in spots, whose intensities were used to compare normalizations:
values in each array are plotted against the corresponding average
across all arrays. Ideally, if no normalization is required, all points
fall on the diagonal. Supplementary Figure S10 shows that after

loessM+GPA normalization, we obtain regression lines closest to
the diagonal.

Using RT-PCR results as true positive genes, we estimate the
number of true positive rate after each normalization. Figure 3B
shows that loessM is able to reach the highest rate of true
positives (especially down-regulated genes), followed by GPA, but
the combination of both, in this case, shows a poor performance.
However, it should be noted that using Cy3 as a quality check,
the experimental design becomes more similar to a single channel
design. Thus, for the identification of DEGs careful consideration
should be paid to the reference used for GPA normalization and to
the values used for groups comparison. In this particular case, we
suggest to use two separate GPA references (one for each group) and
to use only Cy5 values (after normalization) for groups comparison.
The presence of Cy3 value as quality control has the effect of
overestimating gene variance and FDR. Using this second approach,
we reach better results for loessM+GPA (Supplementary Table S2).
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Fig. 2. Specificity and sensitivity for modified real dataset A pertaining to 10–40% scenario and dataset D. Hereafter we indicate with symbol ‘+’ when
channel effect and differential expression are in the same direction and ‘−’ otherwise. Dataset A [(A) for ‘+’ (B) for ‘−’ and (C) for eCADS], dataset D in the
case of down-regulation [(D) for ‘+’ (E) for ‘−’ and (F) for eCADS]. For the complete panels see Supplementary Figures S4–S9.

Real data results—dataset F: dataset F does not have a dye-swap
design, therefore, we are unable to use eCADS design. Hence, in this
comparative evaluation, we assume the absence of channel effect.
First of all, to evaluate the performance of all the normalizations, we
select only empty spots, assuming that, in the absence of systematic
bias, empty spots should show an homogeneous distribution with
small variance around zero. Figure 3C and D shows the expression
distribution and the loess fit of all the 4590 (90 empty spots ×51
experiments) empty spots after all the normalizations. It is worth to
note that loessM, GPA, loessM+GPA, glog, qspline and loess show
the thinnest boxplot (Figure 3C). However, only loessM, GPA and
their combination show the best loess fit, without any systematic
bias for spots with small and high intensities (Fig. 3D).

The authors, using global normalization, find 45 miRNAs
differentially expressed, 24 (53%) up-regulated and 21 (46%) down-
regulated. Using loessM and GPA, we identify 89 differentially
expressed miRNAs [19 in common with the 45 found by Wang
et al. (2007)], with a strong unbalance between up-regulation
(2%) and down-regulation (98%). A global down-regulation of
miRNAs in tumour versus normal samples has been widely observed
in several studies (Bottoni et al., 2007; Chang et al., 2008; Lu
et al., 2005). One hypothesis is that several miRNAs are up-
regulated during differentiation and then down-regulated during
proliferation (Lu et al., 2005). The comparison between loessM
and the original results leads to 19 genes recognized as DEGs,
two with non-concordant expression (we found miR-145 and miR-
26a-1 under-expressed, while Wang and colleagues found them
over-expressed). However, our results are in agreement with Chang
et al. (2008), Ozen et al. (2008) and Lu et al. (2005), who found
miR-26a-1 under-expressed in several human cancers. In particular,
Chang et al. (2008) demonstrated that oncogenic transcription factor,
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Fig. 3. Normalization comparison for datasets E (A and B) and F
(C and D). (A) Green channel median distribution after normalizations
(dotted line represents the expected real median value). (B) Proportion of true
positives (over-expressed: black; under-expressed: yellow) identified after
normalizations. (C) Log ratio distribution of blank spots after normalizations.
(D) Residual systematic bias (after normalizations) in the MA-plot of only
blank spots.

Myc, activated in many human malignancies, represses a broader
set of miRNAs among which miR-26a-1. Furthermore, miR-145 has
been validated through RT-PCR to be under-expressed in prostate
cancer (Ozen et al., 2008). In addition, among those identified only
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using loessM, 21 (30%) have been found down-regulated by Lu et al.
(2005), while among those obtained only by Wang et al. (2007) using
global, 13 (32%) have been found by Lu et al. (2005), but only one
with concordant sign.

4 CONCLUSIONS
Normalization is crucial for the reduction of systematic bias that
characterizes array expression data. Many preprocessing techniques
currently used for mRNA microarrays are directly applicable to
miRNA arrays, even if there are specific characteristics of a miRNA
array that should be considered when choosing the appropriate
method of analysis. Several studies have demonstrated how miRNA
expression could be characterized by a large number of DEGs, often
in one direction. Here, we show that, in these cases, assumption-free
normalizations such as loessM (intra-array), jointly with GPA (inter-
array), outperform the other normalizations in terms of sensitivity
and specificity. However, in case of marked channel effects, the
eCADS experimental design is necessary to reduce dye biases, and
improve the loessM plus GPA performances.
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