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ABSTRACT

MicroRNAs are small (~22 nt) RNAs that regulate
gene expression and play important roles in both
normal and disease physiology. The use of microar-
rays for global characterization of microRNA expres-
sion is becoming increasingly popular and has the
potential to be a widely used and valuable research
tool. However, microarray profiling of microRNA
expression raises a number of data analytic chal-
lenges that must be addressed in order to obtain
reliable results. We introduce here a universal refer-
ence microRNA reagent set as well as a series of
nonhuman spiked-in synthetic microRNA controls,
and demonstrate their use for quality control and
between-array normalization of microRNA expres-
sion data. We also introduce diagnostic plots
designed to assess and compare various normaliza-
tion methods. We anticipate that the reagents and
analytic approach presented here will be useful for
improving the reliability of microRNA microarray
experiments.

INTRODUCTION

Accumulating evidence suggests that many molecular
processes are controlled by changes in microRNA abun-
dance. Consequently, the use of microarrays to character-
ize microRNA expression is becoming an increasingly
popular research tool. However, this application raises
data analytic challenges that must be addressed in order
for the results to be reliable. Foremost among these is
between-array data normalization. Substantial differences
between the nature of typical microRNA and mRNA
expression experiments suggest that common methods of
data normalization employed for mRNA expression arrays
may not be ideal for microRNA arrays (1). There are

relatively few known microRNAs for any species (�600
for humans), and the proportion of microRNAs abun-
dantly expressed in a given sample tends to be much smal-
ler than mRNAs (reflected in the tissue-specific expression
pattern of many microRNAs). These two observations
suggest that the usual assumptions for normalization
between mRNA arrays, that most mRNAs are not dif-
ferentially expressed across samples and that the number
of such mRNAs is large, are unlikely to hold true for
microRNA arrays. Since the number of expressed
microRNAs in a given sample tends to be small, the pro-
portion of those that are differentially expressed (among
those expressed at all) is much larger than that observed
when profiling global mRNA expression.
The overall set of procedures that need to be followed to

process raw microarray data is well known from the use of
microarrays for many other purposes, such as detection of
differential mRNA expression and array competitive
genomic hybridization (aCGH). Briefly, one begins with
some form of quality assessment of the obtained images,
followed by normalization, and finally estimation of dif-
ferential expression. As an approach for quality assess-
ment, we constructed a synthetic universal microRNA
reference comprised of a pool of 480 chemically synthe-
sized microRNAs corresponding to all known human
microRNA probes present on the microarray. We used a
platform based on locked nucleic acid probes spotted on
glass slides and used in two-channel mode, in which the
sample was labeled and hybridized in red (Cy5) and the
universal reference pool in green (Cy3). The universal
microRNA reference pool was optimized to comprise
individual microRNAs at concentrations selected to pro-
vide relatively uniform level of intensity in the green chan-
nel. This approach provides an excellent basis for quality
assessment procedures that could potentially detect bad
arrays or regions of arrays that are not functioning
appropriately. The low number of expressed microRNAs
in individual biological samples and the intrinsic
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between-sample variability makes use of the experimental
samples (red channel) for assessing quality difficult.
As an approach to facilitate data normalization, we

show how chemically synthesized spike-in microRNAs
can be employed. We synthesized a set of 15 nonhuman
microRNAs as spike-in controls to be included in the
labeling reaction for each experimental sample. Spike-ins
corresponded to non-human microRNA probes present
on the array and were further empirically confirmed to
show no cross-hybridization with human probes on the
array. The concentration of each spike-in was empirically
optimized to maximize the range of the signal provided by
the spike-ins as a group. Signal obtained from these
reagents is useful in assessing the performance of various
normalization methods, and plays a central role in a novel
normalization method we propose here. This approach is
applicable to any microRNA microarray where unique,
non-cross-hybridizing probes for a different species than
the one of interest are present. This is in fact true for most
popular microRNA microarray platforms, and we provide
specific suggestions for microRNAs that are likely to serve
as successful spike-ins on other platforms. Although initial
experiments are required to optimize the concentration
of spike-ins, this step needs to be performed only once
for a given platform.
We provide explicit methods to address the issues of

quality assessment, normalization and the detection of
differential expression. We demonstrate implementation
of our methods using a dataset representing microRNA
intensity profiles of two histologic types of ovarian cancer
as well as primary cultures of human ovarian surface
epithelial cells. We also report qRT-PCR results for
selected microRNAs to provide independent assessment
of our methods.

We note that Hua et al. (2) have also compared various
normalization methods for microRNA microarrays, using
correlation with PCR results to quantify performance.
Although they report print-tip loess normalization as
the method that performs best, we find no statistically
significant difference between it and other standard meth-
ods compared in their study (median normalization, VSN,
etc.), as we show in the Supplementary Material. We have
not considered print-tip loess normalization in our analy-
sis as it does not seem applicable to our data; in particular,
unlike for Hua et al. (2), a substantial proportion of
microRNAs appear to be unexpressed in our samples.

MATERIALS AND METHODS

Biological samples

Primary human ovarian surface epithelial cultures were
derived from histologically normal oopherectomy speci-
mens and cultured as described in detail in the
Supplementary Material. Snap frozen ovarian cancer
tissue specimens corresponding to serous and endome-
trioid histologies were obtained from the Pacific Ovarian
Cancer Research Consortium Repository. All clinical
samples in this study were collected under Institutional
Review Board-approved protocols.

Experimental methods

MicroRNA microarrays. Explicit details regarding the
microarrays are given in the Supplementary Material.
Briefly, as shown in Figure 1, the arrays had 16 print-tip
blocks, each with 238 spots laid out in a 14� 17 grid.
Of these, 672 spots were blank (primarily at block bound-
aries), 1930 represented nonhuman microRNAs, 904 were

Non–Human probes
(1930 spots)

Blank
(672 spots)

Human miRNA probes
(904 spots)

miRPlus probes
(302 spots)

Figure 1. Layout of microRNA arrays. There were 16 print-tips, and blocks were laid out on a 4 by 4 grid. The majority of spots do not represent
human microRNAs. Of the ones that do, each are spotted in duplicate, so there are �450 unique microRNAs in total. Included among the
nonhuman microRNAs are 15 spike-in controls, also spotted in duplicate.

e17 Nucleic Acids Research, 2009, Vol. 37, No. 2 PAGE 2 OF 8



human microRNAs and 302 were proprietary probes
(miRPlus). Each probe was spotted in duplicate. Two
arrays were printed on each slide.

PCR validation. For some microRNAs a TaqMan
microRNA assay (Applied Biosystems) was used for
qRT-PCR. Normalization was done with the RNU24
endogenous control assay. Reverse transcription was
carried out with the ABI microRNA Reverse Transcrip-
tion kit using the manufacturer’s recommended protocol.
Real-time PCR was performed on an ABI Prism 7900HT
Sequence detection system using 2� Universal PCR
Master Mix, no AmpErase UNG. A total of seventeen
microRNAs (listed in the Supplementary Material) were
assessed by qRT-PCR.

Spiked-in synthetic nonhuman microRNAs. Fifteen non-
human microRNAs that did not show cross-hybridization
with multiple human tissue RNA samples and that exhib-
ited sufficient signal intensities were used as spike-ins in
varying amounts adjusted to maximize the range of the
signal they provided, covering the expected span of inten-
sities of biological samples. These were added to samples
for both the red and the green channels. See the Supple-
mentary Material for more details, including the identities
of the microRNAs used.

Synthetic human microRNA universal reference
pool. A synthetic human microRNA universal reference
pool was constructed and was used in the green channel
in all arrays (we will sometimes refer to this as the refer-
ence channel). Briefly, RNA oligonucleotides were synthe-
sized corresponding to 454 microRNAs, of which 56 failed
to provide sufficient intensity, for a variety of reasons,

leaving 398 that were used on our arrays. Their concen-
trations were adjusted to provide approximately uniform
intensity across spots.

Quality assessment

The measured per-spot log2 intensities may be used to
assess the quality of the arrays and spots. The values in
the red channel are not suitable for quality assessment,
but the green reference channel is useful because it
should be the same on all arrays, and the Cy3-labeled
(green) synthetic universal reference pool oligos should
hybridize to most spots that correspond to human
microRNAs. We see an example of this in Figure 2,
which is much like the heatmap, or false color image,
that is widely used to convey gene expression data.
Rows represent microRNAs, and the columns represent
arrays. The microRNAs are ordered by average intensity
across arrays, as there is no particularly natural ordering
for them. The false color represents intensity, which is
scaled to lie between 0 and 1 for each spot; this enhances
comparison across arrays at the cost of comparison across
spots, which is not of interest.
We use this graphic to demonstrate the presence of a

batch effect in our experiment. There are two well-defined
batches: Arrays 159–184 were labeled on 4/13/07 and
hybridized on 4/16/07 (159–182) and 4/17/07 (184).
Arrays 207–213 were labeled on 5/5/07 and hybridized
on 5/14/07. The arrays from the second batch (207–213)
have larger intensity in the green channel. The banding
pattern visible in this figure is presumably due to the
fact that two arrays were printed on each slide.
Other plots designed to highlight this batch effect

can also serve as diagnostics for assessing different

Green channel with no normalization
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Figure 2. False color image of raw intensities in the reference channel. Columns represent arrays and rows represent spots. Only human microRNA
spots are shown. The intensities have been location- and scale-transformed within each row (spot) to lie between 0 and 1; this enables comparison
across arrays. Other transformations are possible, and give similar results. There are two interesting features in this plot. First, there is a banding
pattern of high and low intensity on alternate arrays. This is presumably due to the fact that two arrays are hybridized on each slide. Second, the last
six arrays, run on a different day, have consistently higher intensity, suggesting a batch effect. This effect is also seen in Figure 3.
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normalization methods. Supplementary Figure S2, which
encodes a pairwise distance between all arrays, is an exam-
ple of such a plot. Another example is Figure 3, which
plots the estimated densities for the green channel log2
intensities. The two batches are indicated by different
colors in Figure 3, and a visual separation of the two
batches is readily apparent in the densities for the unnor-
malized intensities. The separation is removed by all three
normalization methods considered in this article (see the
next section), but with some differences in behavior for
low intensities. Figure 3 also serves as a diagnostic of
array quality; had there been any bad arrays, one or
more of the corresponding density estimates are likely to
have been aberrant.

Normalization of measured intensity

Normalization is an essential preprocessing step in the
analysis of any microarray experiment. Its primary pur-
pose is to try to ensure that the observed between-array
differences are due to biological phenomena, and not due
to artifacts that arise due to differences in handling or
processing of the samples. Normalization of microRNA
microarrays is problematic primarily for two reasons.
First, the number of microRNAs measured by the
arrays is fairly small, numbering only in the hundreds
(Figure 1). Second, even among the measured micro-
RNAs, only a small number are expressed at all in a

given tissue, and consequently, most of the spots on the
arrays cannot be used for normalization. In other words,
the usual normalization assumptions do not apply. A care-
ful analysis requires the development of a reasonable
normalization strategy, as well as diagnostics that can be
used to assess the performance of potential normalization
strategies.

We examined the properties of three different normal-
ization strategies: global median normalization, variance
stabilizing normalization and a spike-in based normaliza-
tion. Global median normalization (3) has been previously
used for normalizing microRNA data (4). Variance stabi-
lizing normalization (VSN) (5) is another method widely
used for microarray data. In both cases, we only use the
human microRNAs in the normalization, as the remain-
der are unlikely to be expressed in our samples. The third
method (spike-in VSN normalization) is described next.

Spike-in VSN normalization. One way to assess whether
or not normalization is needed is to plot the raw log2 inten-
sity values of each spike-in control against their median
across all arrays. If no normalization is needed we expect
these points to all fall along the diagonal line y=x. This
is not quite true (Supplementary Figure S5), but the depar-
tures are small, and can be accounted for by an affine
transformation. This observation suggests a normalization
procedure where all values on an array are transformed
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Figure 3. Histograms (kernel density estimates) of log2 intensity in the reference channel. The rows correspond to different types of probes, and the
columns represent the different normalization methods used. Colors distinguish the two batches, and show a systematic upward shift in the second
batch. All normalization methods appear to rectify the batch effect for high intensity spots, but have different effects on the low intensity spots.

e17 Nucleic Acids Research, 2009, Vol. 37, No. 2 PAGE 4 OF 8



so that the spike-ins become approximately aligned. We
find such a per-array transformation using VSN, restrict-
ing the model fit to the spiked-in spots. Normalized intensi-
ties for all microRNAs are then obtained by applying
the resulting transformation to all spots of interest on the
array. We will henceforth refer to this procedure as ‘spike-
in VSN normalization’. One limitation of this approach is
that we can only expect reliable results for intensities
within the range covered by the spike-ins, which excludes
targets that are not expressed. To address this problem,
we augmented the list of spike-ins used for the initial
VSN fit with 15 randomly chosen probes that correspond
to rice (Oryza sativa) microRNA targets and have no
known human counterparts. Further details are given in
the Supplementary Material.

Assessment. Assessing different normalization schemes is
somewhat problematic, and is an issue that is difficult to
adequately address due to the lack of gold standard refer-
ences where the true values of some of the features (in our
case microRNAs) are known. The approach taken in (6),
for Affymetrix arrays, was to make use of spike-in data-
sets, where concentrations were known for a small number
of mRNAs. While such an experiment has not yet been
performed for microRNAs, our use of internal spike-ins
provides a reasonable metric for assessing the perfor-
mance of different normalization schemes; the variability
in intensity for a given spike-in, across arrays, should be
small, and consequently, normalization methods that tend
to reduce that variability should be preferred over those
that do not.

However, the reduction of variability alone does not
make a good normalization method. One must also
ensure that the signal is maintained. For that purpose
we used an external method, qRT-PCR, to assess the
levels of 17 microRNAs (Supplementary Table S2).
These measurements can be used to assess the perfor-
mance of various normalization methods; we expect
the normalized expressions to correlate well with the
qRT-PCR measurements, and better normalization
schemes to have stronger correlation. In practice, for
this dataset, the observed correlations are fairly strong
for most microRNAs, both for unnormalized and normal-
ized expressions, with no significant differences between
methods. Details can be found in the Supplementary
Material.

Differential Expression

Differential expression was assessed using an empirical
Bayes approach, as implemented in the software package
limma (7), available from the Bioconductor project (8).
Comparison was between the serous and endometrioid
subtypes of ovarian cancer.

RESULTS AND DISCUSSION

Diagnostics

As noted previously, Figure 3 and other plots designed to
emphasize potential batch effects can be used to assess
success of normalization. Another useful diagnostic can

be derived from the spike-ins. By design, the observed
intensities for the spike-ins should cover the range of
expressed microRNAs, and each spike-in control should
have essentially the same intensity in every array. Thus,
after normalization, these spots should have low variabil-
ity across arrays in the red channel. In Figure 4 we plot,
for each human probe and spike-in, a measure of spread
(MAD) across arrays against a measure of location
(median), before and after normalization. For successful
normalization, we expect the spike-ins to have lower varia-
bility than regular probes with similar median intensities.

Normalization

Our proposed diagnostics, namely, Figures 3, 4, and
Supplementary Figure S2, suggest that all normalization
methods perform adequately in our study. Here, we only
show results of subsequent analysis using spike-in VSN
normalization; results for other methods are given in the
Supplementary Material.

Differential expression

We are interested in microRNAs that have expression
roughly in the range of the spike-ins. However, Figure 4
suggests that the majority of the spots have median inten-
sity below this range, and are presumably not expressed.
We thus retain for further analysis only those spots corres-
ponding to the top 40% median intensity values. This
nonspecific filtering reduces problems associated with
multiple testing. Note that the filtering step is by nature
somewhat arbitrary, and may need adjustments depending
on the purpose of the study; for example, our method may
not identify potentially interesting spots that are expressed
only in a few samples.
Table 1 presents the list of the top ten differentially

expressed microRNAs between the serous and endome-
trioid subtypes of ovarian cancer. When available, the
table is augmented by the result of qRT-PCR (in the
form of a log2 fold change and P-value). The results for
other normalization methods, as well as for unnormalized
intensities, are provided in the Supplementary Material.
The results are largely invariant to the normalization
method used; in particular, the same microRNAs appear
as the most significantly differentially expressed, with lar-
gely similar adjusted P-value.

External validation

It should be noted that most of the diagnostic plots we
propose are based on the premise that successful normal-
ization methods should reduce variability (across arrays)
at spots that correspond to microRNAs that should have
constant expression. A good method should additionally
ensure that the true signals of interest are also reported
accurately. This can be checked by comparing the normal-
ized intensities to expression data obtained using an inde-
pendent method. The supplementary file qrtpcr.pdf plots
average �Ct values obtained using qRT-PCR against raw
and normalized intensities from microarrays for the same
set of tissue samples for 17 microRNAs. The agreement
can be summarized by correlations, which were fairly
strong for most microRNAs, both for unnormalized and
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normalized intensities. Analysis of variance, described in
the Supplementary Material, suggests that the amount of
correlation did not differ significantly between normaliza-
tion methods, especially if we consider the variability
inherent in qRT-PCR.

Reagent availability and applicability to other platforms

Many of our proposed methods depend on a synthetic
universal reference pool and spike-in controls (both avail-
able from author M. Tewari upon request). The choice
and concentrations of the spike-in controls are specific
to the microarray platform used, and will need to be
tuned for each array platform. This is possible as long
as the relevant platform contains a sufficient number of

Location and spread of red channel expression
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unnormalized intensities. There is a clear relationship between location and spread in the unnormalized data. The VSN-based methods make the
spreads more homogeneous, as expected. The vertical grey line represents the 60th percentile of the median values; we only retain spots with median
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Table 1. The top 10 hits using Spike-in VSN normalization

logFC.
array

t adj.
P-value

logFC.
PCR

P-value
PCR

hsa-miR-422b 2.15 6.430 0.000 1.878 0.000
hsa-miR-146b 1.53 5.712 0.000 1.842 0.005
hsa-miR-625 1.24 5.289 0.001 ND ND
hsa-miR-155 1.41 4.167 0.013 3.139 0.012
hsa-miR-200a �1.18 �3.829 0.025 �0.943 0.058
hsa-miR-200b �1.23 �3.441 0.050 �0.914 0.054
hsa-miR-193a 0.94 3.400 0.050 ND ND
hsa-miR-99a 1.42 3.379 0.050 ND ND
hsa-miR-148a �1.01 �3.216 0.056 ND ND
hsa-miR-23b 1.07 3.189 0.056 ND ND

ND, Not done.
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probes that do not cross-hybridize to human microRNAs.
One approach to predict cross-hybridization is to compute
similarity with known human microRNA sequences,
and although further experiments are required to confirm
suitability, an initial set of candidate microRNAs can
be obtained using such a score. We used a similarity
measure that is essentially the length of the longest
common substring, with penalties for mismatches and
gaps, to obtain explicit lists of candidate microRNAs

for popular commercial platforms, given in Table 2–6.
Computations are based on mature sequences in miRBase
release 12.0 (9) and available information on the contents
of each platform. Candidates are sorted by similarity,
but are arbitrarily limited to 20 after removing those
too similar to candidates already on the list, to ensure
that the selected spike-ins do not cross-hybridize with
each other. Further details are given in the Supplementary
Material.

Table 2. Candidate spike-in controls for Exiqon human, mouse and rat

array (v 11.0)

microRNA Mature sequence Similarity
score

mmu-miR-701 UUAGCCGCUGAAAUAGAUGGA 7
kshv-miR-K12-2 AACUGUAGUCCGGGUCGAUCUG 7
hcmv-miR-US25-2-3p AUCCACUUGGAGAGCUCCCGCGG 8
mghv-miR-M1-3 GAGGUGAGCAGGAGUUGCGCUU 8
mmu-miR-693-3p GCAGCUUUCAGAUGUGGCUGUAA 8
mcmv-miR-m108-2-3p GUGACUCGAGACGAGUGACCGGU 8
mmu-miR-714 CGACGAGGGCCGGUCGGUCGC 8
mmu-miR-681 CAGCCUCGCUGGCAGGCAGCU 8
rno-miR-742 GAAAGCCACCAUGUUGGGUAAA 8
mmu-miR-1195 UGAGUUCGAGGCCAGCCUGCUCA 8
mmu-miR-700 CACGCGGGAACCGAGUCCACC 8
mmu-miR-804 UGUGAGUUGUUCCUCACCUGGA 8
mmu-miR-540-3p AGGUCAGAGGUCGAUCCUGG 8
mmu-miR-770-3p CGUGGGCCUGACGUGGAGCUGG 8
ebv-miR-BART17-5p UAAGAGGACGCAGGCAUACAAG 8
mcmv-miR-M87-1 AGGCAGCCGUCGGCAGCGGCAGC 8
ebv-miR-BART1-3p UAGCACCGCUAUCCACUAUGUC 8
ebv-miR-BART6-3p CGGGGAUCGGACUAGCCUUAGA 8
ebv-miR-BART19-5p ACAUUCCCCGCAAACAUGACAUG 8
mcmv-miR-m01-1 AGAGGAGAAUAACGUCGAACGG 8

The similarity score represents the maximum sequence similarity of the
given candidate spike-in miRNA to any known human miRNA in
miRBase release 12.0.

Table 3. Candidate spike-in controls for Exiqon 9.2 all species array

microRNA Mature sequence Similarity
score

ath-miR401 CGAAACUGGUGUCGACCGACA 7
osa-miR169n UAGCCAAGAAUGACUUGCCUA 7
kshv-miR-K12-2 AACUGUAGUCCGGGUCGAUCUG 7
ppt-miR535a UGACAACGAGAGAGAGCACGC 7
mmu-miR-701 UUAGCCGCUGAAAUAGAUGGA 7
ppt-miR1218 CCUUAGAGUCGUAGGCCUCUG 7
bta-miR-425-3p AUCGGGAAUGUCGUGUCCGCCC 7
sme-miR-754 GUUGCUUGGGGUUAUUACUA 7
ath-miR829.2 CAAAUUAAAGCUUCAAGGUAG 7
ppt-miR894 CGUUUCACGUCGGGUUCACC 7
rrv-miR-rR1-5 CCGGAACCCAAAGACACGUGCCCG 7
mdv2-miR-M30 CAACACUCCCUCGGACGCAGCA 7
cel-miR-36 UCACCGGGUGAAAAUUCGCAUG 8
cel-miR-46 UGUCAUGGAGUCGCUCUCUUCA 8
cel-miR-49 AAGCACCACGAGAAGCUGCAGA 8
cel-miR-54 UACCCGUAAUCUUCAUAAUCCGAG 8
cel-miR-58 UGAGAUCGUUCAGUACGGCAAU 8
cel-miR-64 UAUGACACUGAAGCGUUACCGAA 8
cel-miR-75 UUAAAGCUACCAACCGGCUUCA 8
cel-miR-77 UUCAUCAGGCCAUAGCUGUCCA 8

The similarity score represents the maximum sequence similarity of the
given candidate spike-in miRNA to any known human miRNA in
miRBase release 12.0.

Table 4. Candidate spike-in controls for NCode Multi-Species miRNA

Microarray Kit V2

microRNA Mature sequence Similarity
score

mmu-miR-701 UUAGCCGCUGAAAUAGAUGGA 7
cel-miR-36 UCACCGGGUGAAAAUUCGCAUG 8
cel-miR-46 UGUCAUGGAGUCGCUCUCUUCA 8
cel-miR-49 AAGCACCACGAGAAGCUGCAGA 8
cel-miR-54 UACCCGUAAUCUUCAUAAUCCGAG 8
cel-miR-58 UGAGAUCGUUCAGUACGGCAAU 8
cel-miR-64 UAUGACACUGAAGCGUUACCGAA 8
cel-miR-75 UUAAAGCUACCAACCGGCUUCA 8
cel-miR-77 UUCAUCAGGCCAUAGCUGUCCA 8
cel-miR-80 UGAGAUCAUUAGUUGAAAGCCGA 8
dme-miR-3 UCACUGGGCAAAGUGUGUCUCA 8
cel-miR-242 UUGCGUAGGCCUUUGCUUCGA 8
cel-miR-248 AUACACGUGCACGGAUAACGCUCA 8
cel-miR-252 AUAAGUAGUAGUGCCGCAGGUAA 8
cel-miR-259 AAAUCUCAUCCUAAUCUGGUAGCA 8
cel-miR-261 UAGCUUUUUAGUUUUCACG 8
cel-miR-271 UCGCCGGGUGGGAAAGCAUU 8
cel-miR-273 UGCCCGUACUGUGUCGGCUG 8
dme-miR-275 UCAGGUACCUGAAGUAGCGCGCG 8
dme-miR-276a UAGGAACUUCAUACCGUGCUCU 8

The similarity score represents the maximum sequence similarity of the
given candidate spike-in miRNA to any known human miRNA in
miRBase release 12.0.

Table 5. Candidate spike-in controls for Agilent Human miRNA

Microarray, Version 1

microRNA Mature sequence Similarity
score

kshv-miR-K12-2 AACUGUAGUCCGGGUCGAUCUG 7
ebv-miR-BART6-3p CGGGGAUCGGACUAGCCUUAGA 8
ebv-miR-BART17-5p UAAGAGGACGCAGGCAUACAAG 8
ebv-miR-BART10 UACAUAACCAUGGAGUUGGCUGU 8
hcmv-miR-US25-2-3p AUCCACUUGGAGAGCUCCCGCGG 8
ebv-miR-BART1-3p UAGCACCGCUAUCCACUAUGUC 8
kshv-miR-K12-4-5p AGCUAAACCGCAGUACUCUAGG 8
kshv-miR-K12-8 UAGGCGCGACUGAGAGAGCACG 8
kshv-miR-K12-10a UAGUGUUGUCCCCCCGAGUGGC 8
ebv-miR-BART6-5p UAAGGUUGGUCCAAUCCAUAGG 8
kshv-miR-K12-9 CUGGGUAUACGCAGCUGCGUAA 8
hcmv-miR-US5-1 UGACAAGCCUGACGAGAGCGU 8
kshv-miR-K12-4-3p UAGAAUACUGAGGCCUAGCUGA 8
ebv-miR-BART11-5p UCAGACAGUUUGGUGCGCUAGUUG 8
hsv1-miR-H1 UGGAAGGACGGGAAGUGGAAG 9
ebv-miR-BART11-3p ACGCACACCAGGCUGACUGCC 9
hcmv-miR-UL70-3p GGGGAUGGGCUGGCGCGCGG 9
hcmv-miR-US4 CGACAUGGACGUGCAGGGGGAU 9
hcmv-miR-US25-1 AACCGCUCAGUGGCUCGGACC 9
ebv-miR-BART12 UCCUGUGGUGUUUGGUGUGGUU 9

The similarity score represents the maximum sequence similarity of the
given candidate spike-in miRNA to any known human miRNA in
miRBase release 12.0.
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CONCLUSION

In this paper, we have discussed the need for normaliza-
tion in microRNA microarray experiments, noted the
inadequacy of traditional normalization approaches, and
proposed an alternative normalization method, along with
diagnostic plots designed to assess and compare various
normalization methods. Although our discussion takes
place in the context of a specific experiment, its primary
messages are more generally relevant. The need to con-
sider alternative normalization techniques arises from
the fact that the basic presumptions that underlie normal-
ization methods used for mRNA microarrays do not
hold for microRNA microarrays. Our proposed diagnos-
tic plots for comparing normalization methods are applic-
able to other array designs, although some of the
diagnostics benefit from the use of spiked-in spots.
Although spike-in controls are not commonly used in
mRNA microarrays, they are potentially more valuable
tools for quality assessment in microRNA arrays, where
traditional tools designed for mRNA arrays are inade-
quate. The use of spike-ins is also a prerequisite for our
proposed normalization method. The other important
feature, a universal reference on the green channel, pro-
vides a case where the truth is essentially known, thus
allowing us to critically assess our methods; Figure 3
gives one example of such use. Although the high
quality of array data in this study did not rigorously test

our methods, the underlying procedures are sound and
generally useful.
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Table 6. Candidate spike-in controls for Miltenyi Biotec miRNA

microarray

microRNA Mature sequence Similarity
score

kshv-miR-K12-2 AACUGUAGUCCGGGUCGAUCUG 7
mmu-miR-350 UUCACAAAGCCCAUACACUUUC 8
kshv-miR-K12-10a UAGUGUUGUCCCCCCGAGUGGC 8
kshv-miR-K12-4-3p UAGAAUACUGAGGCCUAGCUGA 8
kshv-miR-K12-4-5p AGCUAAACCGCAGUACUCUAGG 8
kshv-miR-K12-8 UAGGCGCGACUGAGAGAGCACG 8
kshv-miR-K12-9 CUGGGUAUACGCAGCUGCGUAA 8
mmu-miR-879 AGAGGCUUAUAGCUCUAAGCC 8
mmu-miR-883b-3p UAACUGCAACAUCUCUCAGUAU 8
mmu-miR-883b-5p UACUGAGAAUGGGUAGCAGUCA 8
mmu-miR-341 UCGGUCGAUCGGUCGGUCGGU 8
ebv-miR-BART1-3p UAGCACCGCUAUCCACUAUGUC 8
rno-miR-871 UAUUCAGAUUGGUGCCGGUCACA 8
ebv-miR-BART10 UACAUAACCAUGGAGUUGGCUGU 8
ebv-miR-BART17-5p UAAGAGGACGCAGGCAUACAAG 8
ebv-miR-BART18-3p UAUCGGAAGUUUGGGCUUCGUC 8
ebv-miR-BART19-5p ACAUUCCCCGCAAACAUGACAUG 8
ebv-miR-BART6-3p CGGGGAUCGGACUAGCCUUAGA 8
ebv-miR-BART6-5p UAAGGUUGGUCCAAUCCAUAGG 8
hcmv-miR-US25-2-3p AUCCACUUGGAGAGCUCCCGCGG 8

The similarity score represents the maximum sequence similarity of the
given candidate spike-in miRNA to any known human miRNA in
miRBase release 12.0.
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