
Published online 14 May 2014 Nucleic Acids Research, 2014, Vol. 12, Web Server issue W107–W113
doi: 10.1093/nar/gku409

ToppMiR: ranking microRNAs and their mRNA targets
based on biological functions and context
Chao Wu1,2, Eric E. Bardes2, Anil G. Jegga1,2,3 and Bruce J. Aronow1,2,3,*

1Department of Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA, 2Division of Biomedical
Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA and 3Department of
Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA

Received March 1, 2014; Revised April 18, 2014; Accepted April 28, 2014

ABSTRACT

Identifying functionally significant microRNAs
(miRs) and their correspondingly most important
messenger RNA targets (mRNAs) in specific bio-
logical contexts is a critical task to improve our
understanding of molecular mechanisms underlying
organismal development, physiology and disease.
However, current miR–mRNA target prediction plat-
forms rank miR targets based on estimated strength
of physical interactions and lack the ability to rank
interactants as a function of their potential to impact
a given biological system. To address this, we have
developed ToppMiR (http://toppmir.cchmc.org), a
web-based analytical workbench that allows miRs
and mRNAs to be co-analyzed via biologically
centered approaches in which gene function as-
sociated annotations are used to train a machine
learning-based analysis engine. ToppMiR learns
about biological contexts based on gene associated
information from expression data or from a user-
specified set of genes that relate to context-relevant
knowledge or hypotheses. Within the biological
framework established by the genes in the training
set, its associated information content is then used
to calculate a features association matrix composed
of biological functions, protein interactions and
other features. This scoring matrix is then used
to jointly rank both the test/candidate miRs and
mRNAs. Results of these analyses are provided as
downloadable tables or network file formats usable
in Cytoscape.

INTRODUCTION

In order to predict the impact of microRNAs (miRs) on bio-
logical systems, it is critical that there is consideration of not
only expression levels, differential regulation and strength
of interaction with messenger RNA (mRNA) targets, but

also the relative importance of those targets in a given bi-
ological context. While most miR–mRNA target analyses
address the relative accuracy of individual miR target pre-
diction algorithms, less is known regarding how specific
biological contexts and functions dictate the relative im-
pact that differentially expressed miRs have on a biolog-
ical system. Since most miR-ranking approaches against
targets have been based on the magnitude by which their
target mRNAs are likely to be degraded or inhibited, this
approach ignores the possibility that strong mRNA tran-
scriptional control has also affected target gene expression,
and this leads to a lack of consideration of important miR
target mRNAs among transcriptionally activated genes. To
evaluate miRs in a biosystems context, several computa-
tional approaches have been developed to identify and pri-
oritize miR–mRNA interactions (1–3). Most of these ap-
proaches combine the mRNA and miR expression profiles
and identify potential functional miR–mRNA interactions
based on the assumption of anti-correlation between a miR
and its predicted target mRNA expression levels (e.g. MA-
GIA (4) and miRGator (3)). Most of the current approaches
for ranking miR–mRNA relationships do not leverage the
mRNA expression-based functional enrichment data (e.g.
enriched biologically processes or pathways of differen-
tially expressed mRNAs). Further, anti-correlation between
miRs and mRNAs may not always mean that there is a
direct interaction between them. Conversely, coexpressed
miR and mRNA could be functionally related. A few of
the recent approaches attempt to address these issues. For
instance, Suzuki et al. developed an approach called GFA
(GSEA-FAME analysis) to rank the most significant miRs
in cancer transcriptomes based on differential enrichment
by the number of miR targets (5). Bryan et al. proposed to
apply biclustering algorithms to visualize functional miR–
mRNA modules (6). Likewise, Li et al. used functional an-
notations (including GeneOntology and Pathway) to prior-
itize all possible target sites of each miRNA (7), the philos-
ophy of which is fully in accord with what we have sought
to enable.

To address the complexities associated with evaluating
and predicting the functional impact of multiple miRs on
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biological networks, we developed ToppMiR, a web-based
analytical system. ToppMiR analyzes and ranks miRs and
their putative mRNA targets within either user-defined or
transcriptome-profiled biological contexts, and therefore
identifies and ranks the potential importance of the miR–
mRNA interaction. ToppMiR learns intrinsic and hidden
knowledge from the context by recognizing significant fea-
tures of the gene sets. The mRNA or gene ranking (tar-
get and non-target genes) is based on previously published
ToppGene and ToppNet (8). Additionally, ToppMiR also
ranks the miRs integrating the target predictions (compiled
from several different prediction algorithms) and their pu-
tative targets’ relative importance in the context. Users can
optionally use expression profiles to refine the miR–mRNA
interactions and prioritization. ToppMiR further enables
extraction and export of either entire or partial networks
of miRs, genes and annotations under analysis in a variety
of formats (e.g. Cytoscape (9) and Gephi (10)) to facilitate
further analyses.

MATERIALS AND METHODS

ToppMiR’s approach to miR/mRNA prioritization can be
summarized as follows: annotations retrieved from the gene
set enrichment analysis are ranked based upon their nom-
inal P values, mRNA targets are ranked based upon their
connectivity to annotations and the PPI analysis if appli-
cable (i.e. a concrete training profile is present), and finally
candidates are ranked based on their connectivity to their
target mRNAs (Figure 1a and b). Thus, an mRNA target
associated with more significant annotation concepts will
be prioritized higher, as will be a miR that interacts with
more significant mRNA targets. A demonstration of this is
shown in Figure 1c where a solid line indicates a putative
miR–mRNA interaction, a dashed line indicates a protein–
protein interaction, and a dotted line represents a mRNA–
concept association. A training set of genes is optional in
the analysis pipeline. If a user wishes to define a given bi-
ological context, this is done by providing to ToppMir a
list of specific genes with known functional significance––
‘training genes’. The training genes are then used to facili-
tate the prioritization of the test set of genes.

Compilation of miR target predictions

ToppMiR uses miR target predictions from seven different
sources (PicTar (11–14), mirSVR (15,16), TargetScan (17–
20), MSigDB (21,22) and PITA (23)) including experimen-
tally verified miR targets (miRecords (24) and miRTarbase
(25)). Since the overlaps among the target prediction algo-
rithms are low (26) (see miR-9 example in Supplementary
file), we use the union of all these predictions as candidate
miR–mRNA interactions whose significance can be subse-
quently evaluated.

Gene set functional enrichment

ToppMiR adopts the approaches of gene set functional en-
richment analysis from ToppGene Suite which applies Hy-
pergeometric distribution with Bonferroni or False Discov-
ery Rate (FDR) correction to determine the statistical sig-
nificance of the annotations.

Figure 1. (a) Layered representation of ToppMiR workflow. Arrows in the
figure indicate the flow of the pipeline and ± represents optional input or
analytical steps specified by users. (b) Schematic representation of Topp-
MiR workflow. Arrows indicate the flow of the application while a dashed
arrow indicates an optional input. After inputs of lists of miRs and mR-
NAs, ToppMiR identifies regulations between them and then prioritize the
mRNAs based on their enriched terms and relative importance in the In-
teractome compared to the training set if applicable. Following these, miRs
will be prioritized based on their connectivities to their mRNA targets. Ex-
pression profiles are optional to facilitate the prioritization. (c) A network
demonstration on miRs, target mRNAs and biological concepts. Each cir-
cle represents a biological concept, each gray rectangle represents a mi-
croRNA while each red hexagon represents a mRNA. A solid line indi-
cates a miR–mRNA regulation, a dotted line indicates a mRNA–concept
association and a dashed line indicates a protein–protein interaction. The
sizes of the nodes reflect their relative functional significance.

Interactome analysis

For the analysis of mRNAs on Interactome (27), we
used HITS (Hyperlink-Induced Topic Search) with priors
(28,29). A ‘back probability β’, where 0 ≤ β ≤ 1, is defined
as the probability to jump back to the ‘root’ set at each step.
Training sets are considered as the ‘root’ sets in the analysis.
A range from 0.3 to 0.5 was recommended for β in previous
study (8).

Prioritization of genes in gene-annotation network

mRNAs are ranked based on their associations with sig-
nificant biological concepts. The functional significance of
the gene set is statistically evaluated by methods discussed
above and the information is represented by enrichment re-
sult, which is then used to rank test genes. Specifically, a
significant score of a gene of a single category is defined as
the sum of the reciprocal P values of the biological concepts
it is associated with. Following this, the significant score is
propagated across heterogeneous categories such as Gene
Ontology (GO), phenotypes and biological pathways until
it is converged. Following this, the input miRs of interest
are prioritized upon the ranking of their putative mRNA
targets. The overall ranking strategy is illustrated in Figure
2 and the detailed ranking strategy can be found in the sup-
plementary file.
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Figure 2. Prioritization of miRs and mRNAs based on heterogeneous net-
work propagation. Blue circles indicate mRNA targets, and black circles
indicate miRs. Other nodes represent biological concepts. Concepts from
the same categories share the same color. mRNAs will be first prioritized
based on their connectivities to important biological concepts of single cat-
egories, and then their significance scores will be propagated across cate-
gories until they converge.

Figure 3. (a) Before miRNA prioritization. Rectangles on the leftmost
are biological concepts, red hexagons in the middle are mRNA tar-
gets, pink rectangles are protein–protein interactions and gray rectan-
gles on the rightmost are miRs. Sizes of the biological concepts and
mRNA targets indicate their relative functional relevance. Edges indicate
associations/regulations between the nodes. (b) After miRNA prioritiza-
tion. Sizes of the miRNAs reflect their centrality to the important mRNA
targets.

Prioritization of miRs by expression and biological functional
relevance

After the analysis and prioritization of mRNAs, ToppMiR
ranks the miRs based on their putative regulations to their
target mRNAs. To do this, a significance score SigmiR is as-
signed to each miR that is the sum of the significance of
all its target mRNAs. Figure 3 demonstrates this approach
by presenting two concept–mRNA–miR networks: (a) be-
fore and (b) after miRs prioritization. The change in size
and position of the miR nodes indicates their significance
scores from the ranking algorithm.

ToppMiR also enables a user-specified coefficient α to
act as a cutoff value that defines which mRNAs are most
significant for evaluation of their connectivity to a list of

miRs. The intent is to focus on mRNA targets that have
the most significance for the biological system as defined
by the enriched features of the user-specified training set or
the test set gene list. By our experiments on the validation
of miR–mRNA pairs derived from PubMed, we observed
that a cutoff value of 40% usually generates the best perfor-
mance. Thus, a default coefficient is set to this value denoted
as α in Equations (1) and (2). Overall, if we let G denote the
final ranked gene list, the significance score of the miR can
be calculated as

SigmiR =
∑α·|Gtest|

i=1
Sig(i )mRNA target (1)

By the use of the different G (test, training), ToppMiR
allows users to choose whether the miR ranking is analyzed
based on either the test or training set features. If the user
chooses to prioritize miRs based on both sets, the analysis is
done in a similar manner compared to only using their tar-
get mRNAs in the training set. An extra step will take place
to multiply the significance score of each miR by the sum of
significance score of its target mRNAs in the training set;
therefore, a significance score of the miR can be interpreted
as

SigmiR =
∑

SigmRNA targetGtrain ·
∑α·|Gtest|

i=1
Sig(i )mRNA target (2)

Integrating analyses in Euclidean space

When expression profiles are available, ToppMiR can take
advantage of such information by integrating enrichment
analysis result and expression profiles together in Euclidean
space. The motivation is to comprehend the significance of
each mRNA and/or miR from multiple aspects. ToppMiR
accepts text input of mRNA and/or miR expression profiles
under a required format explained on the corresponding in-
put page of ToppMiR application online. ToppMiR accepts
HGNC symbol or Entrez ID for the identifier for the mR-
NAs and miRs when uploading a text file. The other two
columns can be specified as ‘Expression level’ and/or ‘Fold
change’. Thus an overall vector profile in multidimensional
Euclidean space for each mRNA or miR can be calculated
as

Sigoverall =
∥∥Sigenrichment analysis + Sigexpression level + Sigfold change

∥∥(3)

Implementation and user access

ToppMiR has been implemented as a web-accessible sys-
tem using Java that runs across a cluster of Linux servers
utilizing a Sun Glassfish Enterprise Server environment.
ToppMiR requests ToppGene functions via Java Messag-
ing Services (JMS). JMS allocates gene-list enrichment jobs
and protein–protein interaction analysis jobs to available
ToppGene resources through a load balancer. ToppMiR
generates and visualizes network-based data using JUNG
libraries (30) and provides the option to download tab-
separated text files or GML format files compatible with
Cytoscape (9). ToppMiR is publicly available at http://
ToppMiR.cchmc.org.
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RESULTS

The performance of ToppMiR was evaluated based on
two types of comparisons: large-scale cross-validations
and small-scale test cases. For large-scale cross-test
set/validation set analyses, we used PubMed abstracts
that co-cite specific miR and mRNAs or pSILAC data
sets, while for small-scale test cases we used tissue-specific
miRs whose expression was shown to be altered using
qPCR data. miR ranking was performed using both the
scenarios––training set dependent and independent. We
used expression profiles to further refine the candidate
genes and miR rankings where possible. Using these series
of test cases, we also demonstrate the utility of ToppMiR
in knowledge discovery and novel hypothesis generation.
Additional details of validation methods and their ap-
plication to different test scenarios can be found in the
supplementary data.

ToppMiR validation using miRNA–mRNA PubMed co-
citation

We developed a series of validation tests based on manual
PubMed searches using a set of publications that were pub-
lished between October and December 2011. These articles
reported at least one experimentally validated miR–mRNA
interaction of functional significance but were not present in
Toppgene’s database (February 2012). The validation set we
developed comprised 16 pairs of novel miR–mRNA pairs
at that time. We used this data to exemplify the capabil-
ity of ToppMiR to prioritize those interactions relative to
a random set of miR targets and thus demonstrate its po-
tential to rank highly biologically significant miR–mRNA
interactions. Additionally, to investigate the effects of train-
ing sets on ToppMiR ranking, we performed the prioritiza-
tion experiments in both training set-dependent and inde-
pendent scenarios. Appropriate training sets were manually
compiled depending on the biological instance reported in
each of the 14 selected publications. For instance, for a pub-
lication reporting either a tumor suppressor miR or an on-
comiR (31), we used cancer-related genes from the Cancer
Gene Census database (32) as the training set. Similarly, for
a publication that reported the role of miR-106b in impaired
cholesterol efflux (33), we applied known genes associated
with the GO term ‘cholesterol efflux’ (GO:0033344) as the
training set.

For each of the experiments, we mixed the ‘target’ miR
(from the publication) with randomly selected 19 miRs to
comprise the set of 20 miRs for prioritization task. In case
of target mRNAs (genes), we added 99 randomly picked
genes to the selected miR ‘target’ gene (from the same pub-
lication) to make a set of 100 genes for each run. For each
miR–mRNA pair, we performed 100 prioritization runs
(with and without using training sets). The rank of the se-
lected miR and the target gene in the resulting list, follow-
ing ToppMiR prioritization, was recorded. Receiver operat-
ing characteristic (ROC) curves were plotted based on the
sensitivity/specificity values, and area under curve (AUC)
was computed as the standard measure of the performance
of the method. Sensitivity was defined as the frequency of
‘target’ miRs or genes that are ranked above a particular

cutoff, and specificity as the percentage of miRs or genes
ranked below the threshold in this case.

Of the 16 pairs of miR–mRNA (32 sets of validation re-
sults, 16 each for miR and mRNA), ToppMiR was able to
rank the selected miR with an AUC score ≥ 0.8 in 13 out of
16 cases, with an AUC score greater than 0.8 for 11/16 tar-
gets. This ranking was performed without using any train-
ing set.

We repeated the analyses using appropriate training sets
to evaluate the performance of ToppMiR. Interestingly, no
significant improvement was observed for the majority of
the pairs in terms of the ToppMiR ranking when a training
set was used in the analysis. Among the 16 pairs tested, only
3 miRs and 6 mRNA showed an improved performance (see
supplementary file).

In our 14 selected publications, 11 were cancer-related
while three were non-cancer-related (cholesterol efflux (33),
cardiac arrhythmias (34) and submandibular gland branch-
ing morphogenesis (35)). ToppMiR was able to prioritize
these miR–mRNA interactions with relatively high AUC
scores (0.86 on average). Additional details of the PubMed
publication validation can be found in the Supplementary
Data (Data file S1).

pSILAC data set validation

Using the experimentally supported targets from the pSI-
LAC (stable isotope labeling by amino acids in cell culture)
data set (36,37) we evaluated the performance of ToppMiR
ranking of miRs. Briefly, 100 mRNAs that were most differ-
entially expressed when a specific miR was knocked down
or overexpressed are selected as ‘true targets’ on a genome-
wide scale. The pSILAC data comprise five overexpressed
miRs (let-7b, miR-155, miR-1, miR-16 and miR-30) and
one knocked-down miR (let-7b). In each validation run,
the target mRNAs of a particular miR (with one mRNA
removed as the ‘target’) was used as the training set. The
‘target’ mRNA was then mixed with 99 random mRNAs to
make a test set of 100 genes to form a training set-dependent
scenario. The rank of the ‘target’ mRNA in the resulting
list, following ToppMiR prioritization, was recorded. This
process was repeated for each gene in the list. Likewise, for
ranking the miRs, the ‘target’ miR was mixed with another
19 random miRs to comprise the candidate miRNA list.
We repeated this experiment for the top 20 mRNAs of the
sorted list of each of the 6 individual data sets, thus the to-
tal number of experiments was 120. ToppMiR was able to
rank the ‘target’ miR among the top 10% 69 times out of
120 (∼58%) and 111 times among the top 20% of the prior-
itized lists (∼92.5%). A ROC curve was plotted to visualize
the result, with an AUC score of 0.93.

To examine the effectiveness of different categories of an-
notations, we also ran the experiments with the same sets of
miRs and mRNAs in different settings of annotation fea-
tures, including GO: Biological Process (BP), Mouse Phe-
notype (MP), Pathways, Coexpressions, Transcription Fac-
tor Binding Sites and Diseases, respectively, and plotted
the ROC curves (Figure 4). Some categories, namely GO:
BP, MP, Pathways and Coexpressions, achieved better AUC
scores than others, indicating that annotations of these cat-
egories could be more informative. This observation con-
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Figure 4. ROC curves of LOOCV on pSILAC data. The blue curve was
generated using all features with an AUC of 0.93. The red curve was gen-
erated using ‘core’ features of GO: BP, Pathway, Mouse Phenotype and
Coexpression with an AUC of 0.92. Other curves were generated using
single features respectively as listed in the legend.

curred with previous studies (7,38). Thus we performed an-
other examination using only these four selected categories
in the same setting of miRs and mRNAs. In this experiment,
ToppMiR was able to rank the ‘target’ miR 109 times out
of 120 among the top 20% of the prioritized lists (∼90.8%)
with an overall AUC score of 0.919. The comparable re-
sult suggested users could approximate the result generated
from using all features by using only some of the ‘core’ cat-
egories indicating the power of data integration (see Figure
4).

On the other hand, the overall AUC score of ‘target’ mR-
NAs was 0.76. Noted the score being much better than most
‘false negative’ genes in the genome, it was lower than that
of the ‘target’ miRs. We hypothesize this behavior was at-
tributed to the fact that the correlations between the ‘tar-
get’ miRs and the training set of genes were greater than
the functional correlations between their putative mRNA
targets.

miR and mRNA expression data integration

Finally, we also evaluated the performance of ToppMiR
combining expression profiles of miR and mRNA with in-
teraction and enrichment analysis. To evaluate biologically
significant miRs within different biological contexts, we use
a miR expression data set from GSE34199 (39) which con-
tains both undifferentiated human embryonic stem cell lines
and four normal adult human tissues. miR profiles included
470 miRs as assayed on the Agilent Human miRNA mi-
croarray platform. For the test set of mRNA expression,
we used BodyMap (40,41), a collection of highly expressed
gene profiles in various normal human tissues. Two brain
overexpressed miRs, namely miR-9 and miR-124, were se-
lected for ToppMiR ranking. As part of training set, us-
ing GO and Mammalian Phenotype Ontology annotations,
we compiled three distinct yet overlapping training sets of
genes associated with the following essential functions of
the brain: memory and learning, neuron development and
neuron physiology (see supplementary file).

For each ‘target’ miR and training set of genes, 49 ran-
dom miRs were selected for each individual run. This pro-
cess was repeated 100 times for each combination of ‘tar-
get’ miR and training set. The ranks of the ‘target’ miR
before and after expression profile integration were both

recorded. As the results indicated, integrating expression
profiles greatly enhanced the performance to identify sig-
nificant miRs.

Without expression profile data integration, the ranking
of miR-124 did not change as a function of alternative train-
ing profiles (ranked in the range of 8.2–8.5 out of 50 on av-
erage). On the other hand, the estimated impact of miR-9
did not change as a function of neuron development and
physiology training profiles (average ranked at 8.8 and 9.2,
respectively). However, the use of training genes associated
with memory and learning caused ToppMiR to rank miR-9
considerably higher (ranked at 4.2 on average).

DISCUSSION

ToppMiR seeks to enable discovery and hypothesis genera-
tion about the potential impact of miRs within specific bi-
ological systems. In this study, our approach to validating
the ability of ToppMiR to usefully rank a list of candidate
miRs is based on literature miR–mRNA co-citations as a
form of gold standard that should rank highly in test com-
parisons of miRs and mRNAs. In approaching these tests,
we constructed several scenarios that use explicit biological
system-associated genetic knowledge as well as mRNA and
miR expression data from different contexts. The results of
these analyses and comparisons have illustrated several dif-
ferent approaches that can lead to potentially interesting bi-
ological systems-level predictions of miR functions suitable
for experimental validation for their strong impact on the
function of a biological system.

By using ranked features and functions associated with
a biological context based on a gene training set or the
observed pattern of mRNA expression, the relative impor-
tance of different miR targets can be evaluated. ToppMiR
allows for this and thus provides valuable perspectives for
the exploration of the potential functional significance of
miRs and their validated or predicted targets. Li et al. pro-
posed to use functional annotations to predict and priori-
tize miR targets, and showed that validated targets exhib-
ited greater significance (7). We derived the framework of
ToppMiR following a similar perspective and provided a
web tool that generated analysis results on multiple miRs in
real-time. In contrast to other miR analysis tools, ToppMiR
does not assume that the most relevant mRNA targets are
those that decrease upon miR expression increase. Rather it
performs analyses that focus on miR–mRNA pair recogni-
tion, using enrichment analysis on target mRNAs and the
integration of the two to leverage knowledge of a biological
system such that the interesting miRs and mRNA targets
are identified based on their centrality to the most signifi-
cant properties of the biological state or system.

In the comparison between scenarios of training set de-
pendent and training set free, we have observed that employ-
ing a biologically appropriate training set never deteriorates
the performance of the prioritizations. It seems to be espe-
cially helpful when the user is interested in exploring the
functionality of miRs in a particular biological context that
is represented by a selected training set that can encompass
groups of genes known to be necessary for the development
or function of a given biological state.
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Nevertheless, our approach also has some limitations that
should be considered in its practical use. From the perspec-
tive of candidate miR–mRNA targets, we compiled seven
different sources curating validated, observed, and pre-
dicted miR–mRNA interaction potential. Whereas miR-
Tarbase and miRecords represent largely validated inter-
actions, the other data sources contain varying degrees of
large-scale observational (e.g. mirSVR) or only predicted
interactions that may not validate under some circum-
stances. Most prediction algorithms utilize configurable
miR sequence conservation and specificities to generate
a likelihood of a conserved miR–mRNA target site (17).
While the predictions greatly enlarge the potential impact
of less studied miRs, the lack of agreement among these
predicted interactions shows diversity even when their in-
dividual predictions are done with high confidence (26).
Therefore, the risks of false positive interactions cannot be
avoided. Another important effect can be driven by a user’s
hypothesis as to the most important biological features of a
given system that leads them to select a given training set.
This suggests that some scenarios of prioritizations of genes
and miRs may benefit from more sophisticated and contex-
tual approaches to developing training genes. For example,
in transiting from stem cell to lineage restricted cell, it may
be most important to consider targets that would cause the
alternative differentiation pathway rather than the one that
is to be formed. An additional layer of complexity can be
envisaged based on species-specific evolution of miRs, their
regulatory behavior, and the changes in miR recognition se-
quences in genes’ 3′UTRs.

Importantly, we hypothesize new miR-centered compu-
tational approaches based on knowledge extraction, large-
scale expression pattern analyses, and the effects of disease
associated biological processes such as adaptation to polar-
ized environments or different genetic variation and muta-
tion will all have the potential to greatly improve our ability
to identify critical miR regulatory relationships. In evalu-
ating factors that led to validated miR targets to be highly
ranked, it is clear that the number of miR targets may not be
nearly as important as the centrality of the target for an im-
portant biological network. In other words, significant tar-
get mRNAs are those that are involved in regulating critical
biological processes or pathways. Thus, well-designed com-
putational approaches to recognize those mRNAs and that
assign them more weight is key factor to optimize. An in-
spiring future direction is to build miR models that integrate
knowledge of the mRNAs that play quantitative roles in the
determination of biological states (42) such that a biological
system can be analyzed based on dynamic considerations of
network function.

We believe that ToppMiR is a unique computational tool
capable of improving our ability to predict significant miRs
and miR targets in diverse biological contexts. Given what
ToppMiR can do, additional contextual community detec-
tion technologies can now be applied to identify overlap-
ping and/or non-overlapping functional modules (43).

When prioritizing target mRNAs, we treated mRNA-
annotation networks as directional, which allowed us to
employ InDegree, SALSA (44) and other alternative algo-
rithms based on random walk models (details in Supple-
mentary file). Directional relationships are critical to incor-

porate into biological systems modeling and network anal-
ysis. Most gene to biology linkages are directional, i.e. most
genes are suppressors of diseases and phenotypes; some mu-
tant alleles have dominantly acting effects on disease; miRs
are suppressors of gene transcripts. In contrast, transcrip-
tion factor binding sites, gene coexpression patterns, gene-
ontology features, protein interactions, and pathways are
positively determined by expressed genes. In order to ap-
ply the algorithms, the edges were being treated as bidirec-
tional in our application. While our approaches show lots
of promising results, its application and evaluation in a va-
riety of scenarios is now critical to determine when impor-
tant miRs and miR targets in different biological contexts
may be surmised to play critical roles in the determination
of systems’ function in health and disease.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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