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Fluorescence in situ hybridization (Fish) is widely used 
to obtain information about transcript copy number and 
subcellular localization in single cells. however, current 
approaches do not readily scale to the analysis of whole 
transcriptomes. here we show that branched dnA technology 
combined with automated liquid handling, high-content 
imaging and quantitative image analysis allows highly 
reproducible quantification of transcript abundance in 
thousands of single cells at single-molecule resolution.  
in addition, it allows extraction of a multivariate feature set 
quantifying subcellular patterning and spatial properties of 
transcripts and their cell-to-cell variability. this has multiple 
implications for the functional interpretation of cell-to-
cell variability in gene expression and enables the unbiased 
identification of functionally relevant in situ signatures 
of the transcriptome without the need for perturbations. 
Because this method can be incorporated in a wide variety of 
high-throughput image-based approaches, we expect it to be 
broadly applicable.

Large-scale transcriptomics with microarrays or RNA-seq is 
usually applied on a population of RNA molecules pooled from 
a large number of cells1–4. Although sequencing of single-cell 
transcriptomes has been performed5–8, current approaches work 
reliably only for abundant RNAs9, are feasible for only a small 
number of single cells and do not reveal the subcellular localiza-
tion of transcripts.

FISH may overcome this, but it is not an automated large-scale 
approach. Using branched DNA (bDNA) technology, we applied 
single-molecule FISH (sm-FISH) to automated large-scale 
experiments. bDNA sm-FISH allows the use of one standard 
protocol and automation with high-throughput liquid-handling 
equipment and high-resolution screening microscopes. In con-
junction with high-performance computing, bDNA sm-FISH 
enables the large-scale multivariate profiling of RNA transcript 
abundance as well as subcellular localization and patterning 
in thousands of single human cells per transcript with single- 
molecule sensitivity.

image-based transcriptomics in thousands of single 
human cells at single-molecule resolution
Nico Battich1–3, Thomas Stoeger1–3 & Lucas Pelkmans1

results
bdnA allows accurate single-molecule rnA measurements
In bDNA FISH, for which reagents are available from Advanced 
Cell Diagnostics and Affymetrix, multiple pairs of primary probes 
hybridize to two consecutive regions of 20–30 nucleotides at mul-
tiple positions along the transcript. Each primary probe pair jointly 
provides a hybridization site for a preamplifier probe, which hybrid-
izes multiple amplifier probes that allow binding of a large number 
of labeled probes10–14 (Fig. 1a). This contrasts with the most 
widely used sm-FISH approach, o-nuc sm-FISH, which employs 
oligonucleotides labeled with 1–5 fluorophores and lacks a signal- 
amplification step15,16 (Fig. 1b). Consequently, o-nuc sm-FISH 
required a 600-times-longer exposure and a 100-times-greater 
camera gain than bDNA FISH to generate images with discernible 
spots for endogenous MYC mRNA in HeLa cells using a 100×/ 
1.49–numerical aperture (NA) oil-immersion objective and 
electron-multiplying charge-coupled device (EMCCD) cameras  
(Fig. 1c,d and Supplementary Fig. 1a,b). With these different set-
tings for exposure and gain, both approaches resulted in similar 
spot counts: 191.0 ± 66.4 (mean ± s.d.) spots per cell for bDNA 
FISH (n = 28 cells) and 189.0 ± 61.0 spots per cell for o-nuc  
sm-FISH (n = 20 cells). Under equal imaging conditions, bDNA 
spots were 100 times brighter than o-nuc spots (Fig. 1e–g and 
Supplementary Fig. 1), resulting in a signal-to-noise ratio that was 
at least 2–3 times higher than that of o-nuc sm-FISH (Fig. 1h and 
Supplementary Note 1). Furthermore, by labeling the same tran-
script with two different probe set types (Supplementary Fig. 2a–c 
and Supplementary Note 2), 80.8% (n = 4,703 spots) of KIF11 tran-
scripts and 84.58% (n = 2,979 spots) of ERBB2 transcripts labeled 
with type 1 probe sets were also labeled with type 6 probe sets, which 
are similar accuracies to that reported for o-nuc sm-FISH16. Thus, 
bDNA FISH and o-nuc sm-FISH detected comparable numbers of 
discrete spots in single cells with a similar accuracy, but bDNA FISH 
yielded brighter spots with a better signal-to-noise ratio.

bdnA sm-Fish allows high-throughput rnA measurements
We next used a fully automated confocal microscope to image 
large fields of cells with a 40×/0.95-NA air objective and scientific  
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complementary metal-oxide semiconductor (sCMOS) cam-
eras. We performed FISH against the endogenous transcripts of 
ERBB2, MYC and TFRC in ~104 HeLa cells per gene in a 384-
well plate format. Spots could be observed for each gene with the 
bDNA method only (Supplementary Fig. 3), and this method 
generated a highly reproducible mean number of spots per cell 
(23.41 ± 0.47, 203.01 ± 8.02 and 187.93 ± 6.88 for ERBB2, MYC 
and TFRC, respectively; n = 4 wells; Supplementary Table 1). 
Notably, the median number of spots per cell detected for MYC 
was comparable to that obtained with bDNA (P = 0.54, Mann-
Whitney-Wilcoxon test) and o-nuc sm-FISH (P = 0.52, Mann-
Whitney-Wilcoxon test) using 100×/1.49-NA magnification and 
EMCCD cameras.

To confirm that the spots were specific for ERBB2, MYC and TFRC, 
we performed gene silencing with RNAi. The spot-count reduc-
tion observed was strong and comparable to that determined from 
qPCR measurements (Supplementary Fig. 3 and Supplementary 
Table 1). Furthermore, probe pairs against the Escherichia coli gene 
dapB showed a false positive rate of 0.44 ± 1.0 mean spots per cell 
(n = 21,094 cells). To test nuclear accessibility of the bDNA probes, 
we performed bDNA FISH against the nuclear-localized SNORD3 
transcripts and found no signal in the nucleus (Supplementary 
Fig. 4a,b). Although acetic acid in the fixation buffer17 increased 
the nuclear signal for SNORD3 and HPRT1, it reduced cytoplasmic 
spots (Supplementary Fig. 4b,c) leading to inaccurate measure-
ments of the mature mRNA for HPRT1 (ref. 18).

Next we tested the number of primary probe pairs that ensures 
that each transcript in the cytoplasm is detected by the signal 

of at least one primary probe pair. For both ERBB2 and HPRT1, 
ten primary probe pairs allowed a detection of more than 
80%, and 15 primary probe pairs allowed a detection of more 
than 90%, of the maximum number of detectable transcripts 
(Supplementary Fig. 5a,b). Single-cell distributions of spots per 
cell and their Fano factors, i.e., variance divided by mean spots 
per cell, also stabilized from ten primary probe pairs onwards  
(Supplementary Fig. 5c–e).

We then evaluated the single-spot detection accuracy of high-
throughput bDNA FISH in single cells (Supplementary Fig. 6). 
The single-cell correlations of spot counts per cell for KIF11 and 
ERBB2 transcripts labeled simultaneously with two probe sets of 
different color (Supplementary Fig. 3a) were 0.976 and 0.836, 
respectively (Pearson correlation; Supplementary Fig. 6a,b). We 
estimated that for KIF11, 2.5% of the total cell-to-cell variabil-
ity was of technical origin, whereas for ERBB2 this was 21.8% 
(Supplementary Fig. 6). The higher fraction of technical vari-
ance in single-cell measurements for ERBB2 was likely due to its 
lower expression (24.16 ± 14.55 spots per cell, n = 10,524 cells) 
compared to KIF11 (73.23 ± 52.01 spots per cell, n = 10,223 cells). 
Thus, bDNA FISH with 15 primary probe pairs is suitable for 
sensitive, specific and reproducible high-throughput transcript 
quantification in 384-well plates at single-molecule and single-cell 
resolution for both low-and high-abundance transcripts.

experimental and image-analysis pipeline
To assess the feasibility of applying our approach at the genome 
scale, we constructed a library of bDNA probes in 384-well 
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plates targeting 928 human genes involved in basic cellu-
lar functions, cancer, signaling, endocytosis and metabolism 
(Supplementary Table 2). In addition, we modified existing 
algorithms16,19–21 to create a robust high-throughput spot- 
detection pipeline (Supplementary Note 3, Supplementary  
Fig. 7 and Supplementary Software). We automated the experi-
mental protocol using a liquid-handling platform (Supplementary 
Protocol), and image analysis19 and supervised machine learn-
ing data cleanup22 were submitted to high-performance comput-
ing using iBRAIN23. As a proof of principle, we performed two 
independent biological replicates of in situ transcriptomics in an 
unperturbed HeLa cell line (Fig. 2a).

We acquired confocal images in ten z planes, with a step size 
of 1 µm, covering the full cellular height at 49 sites in each well. 
Because two-dimensional spot detection on maximum-intensity 
projections of z stacks yielded virtually identical numbers of spots 
per cell as three-dimensional spot detection (Supplementary  
Fig. 7i), we performed all our quantifications on projected z 
stacks. We obtained 18 primary spot features that reflect the  

relative localization of each spot in a single cell, with respect to 
both the cell and other spots (Fig. 2b,c). To give an impression of 
the information contained in one such feature, we depicted the 
single-cell values for mean closest distance of detected spots to 
the cell outline for the transcript TFRC (transferrin receptor 1) 
in a segmented population of cells (Fig. 2c).

high-throughput quantitative image-based transcriptomics
The mean number of spots per cell for each gene was highly repro-
ducible between the two biological replicates (Pearson correlation 
of 0.989; Fig. 3a and Supplementary Table 3). In addition, the 
absolute gene expression level of control genes across plates was 
very similar (Supplementary Fig. 8). When comparing distri-
butions of single-cell spot counts of each gene with the negative 
control dapB (Fig. 3b), we found that 857 of 928 gene transcripts 
contained a significant fraction of cells with spot counts higher 
than those for dapB (P < 10−4 for both replicates; Supplementary 
Note 4 and Fig. 3c). These 857 detected genes displayed a bimo-
dal distribution of low- and high-expressed transcripts with 
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a boundary between them at 3.01 ± 0.50 mean spots per cell  
(n = 1,000 bootstrapped samples; Fig. 3d, Supplementary Fig. 9 
and Supplementary Note 4). Such a boundary was previously 
estimated at a lower value24.

Notably, the correlation between mean spot count per cell and 
transcript abundance measured with RNA-seq (Supplementary 
Fig. 10) was 0.797 (Pearson correlation) or 0.842 (Spearman cor-
relation) (Fig. 3e), which increased to 0.917 (Pearson correlation) 
or 0.915 (Spearman correlation) after outlier rejection. For 71.7% 
of transcripts, both methods either detected a signal at similar 
levels (64.8%) or did not detect a signal (6.9%; Fig. 3f). 22.5% of 
transcripts were detected only by bDNA sm-FISH (18.2% as low-
expressed transcripts), whereas 0.8% of transcripts were detected 
only by RNA-seq (0.54% as low-expressed transcripts, not shown). 

Of the remaining 5% of transcripts, 1.6% were detected only by 
bDNA sm-FISH because they were nonpolyadenylated, whereas 
3.4% were detected by both methods but their levels did not cor-
relate (Fig. 3e). Comparing the detection sensitivity and dynamic 
range of high-throughput bDNA sm-FISH with RNA-seq revealed 
that at the lower limit of detection, high-throughput bDNA sm-
FISH was more sensitive than RNA-seq (0.066 ± 0.015 and 0.118 ±  
0.034 spots/copies per cell, respectively; n = 1,000 bootstrapped 
samples; Fig. 3g,h). At the upper limit of detection, high-through-
put bDNA sm-FISH showed a ceiling effect at 288.98 ± 18.24 
spots/copies per cell at the mean level (n = 1,000 bootstrapped 
samples; Fig. 3g,i). At the single-cell level, however, we obtained 
spot counts higher than 1,500 (for example, for 18S1–18S5 RNA, 
CYTB and GAPDH; not shown). For RNA-seq, the upper limit 
of detection for the genes in our library was 2,262.41 ± 1,278.74 
copies per cell (n = 1,000 bootstrapped samples; Fig. 3g,h).

Figure � | Image-based transcriptomics is 
reproducible, sensitive and comparable to  
RNA-seq. (a) log10(mean spots per cell) 
correlation of biological replicates. The Pearson 
correlation is shown. (b) Relative distribution 
of dapB compared to those of two examples, 
ERBB2 and FOS (replicate 1). The gray area 
is the fraction of cells above background (or 
detected signal) for a given gene. (c) Fraction 
of cells above background (black line) and 
corrected mean expression level (data points) 
in log10(mean spots per cell) for each gene; 
n = 500 bootstraps. Colors indicate whether 
the fraction of cells above background reached 
significance (P < 1.0 × 10−4) in none (red),  
one (brown) or both replicates (blue).  
(d) Distribution of corrected log10(mean spots 
per cell) for blue data points in c (857 genes). 
Solid lines indicate the probability density 
function (PDF) of low-expressed (LE) and  
high-expressed (HE) genes. The dashed line 
is the estimated boundary between the two 
classes (3.01 spots per cell). (e) Correlation of 
RNA-seq, log10(fragments per kilobase of exon 
model per million mapped reads (FPKM)), and 
high-throughput bDNA sm-FISH log10(mean  
spots per cell). Outliers are shown in red. r is the  
Pearson correlation before outlier rejection. The 
dashed line is a guide for the eye. (f) Detailed 
comparison of transcript detection for RNA-seq 
and high-throughput bDNA sm-FISH. ND, not 
detected. (g) Cumulative fraction of genes as a 
function of the expression level in log10(mean 
spots/copies per cell) for RNA-seq and high-throughput bDNA sm-FISH. Smaller panels show the estimation of lower and upper limits of detection 
(dashed lines). Shaded areas represent the s.d. of 1,000 bootstraps. (h,i) Quantification of the lower (h) and upper (i) limits of detection for RNA-seq 
and high-throughput bDNA sm-FISH. Error bars, s.d. of 1,000 bootstraps. ***P < 1.0 × 10−3.
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Thus, high-throughput bDNA sm-FISH generates highly 
reproducible results and is a quantitative method for large-scale 
transcriptomics with high sensitivity that rivals RNA-seq for  
low-abundance transcripts.

requirements for reproducible single-cell distributions
Most studies on cell-to-cell variability in RNA transcript copy 
number have so far relied on the quantification of, at maximum, 
several hundred single cells24–27. However, it is unclear how many 

a b

c

e

d

–25

–20

–15

–10

–5

0

lo
g 10

(P
 v

al
ue

)

12

13

14

15

16

17

%
 o

ve
rla

p 
w

ith
 S

T
R

IN
G

 9
.0

Sterol metabolism
Signaling receptors
Multipass membrane protein

Cell-adhesion receptors
Mitochondria encoded 

Expected by chance

Mean spot count (i)

Mean spatial features + variability (iv)

Mean localization patterns + variability (iii)

All features (v)

Mean spot count + variability (ii)

Acetylation
N-linked glycosylation

Others

Acetylation &
N-linked glycosylation

2

1
3

4

GNAS

ATP6

ND4L

CYTB

COX2
ND1

COX1

PPIB

B2M

ND5 ND2

ATP8

ND4

COX3

0
0.2
0.4
0.6
0.8
1.0

F
ra

ct
io

n 
of

 a
ll

ICAM1

TGFBR2

GPRC5C

IGFBP3

PSEN1

HMGCR

LDLR

PLAUR DPY19L1
HSD17B12 CXCR4

CELSR1

ITGA5

LIPA

CELSR2

ABCC1

PPIB
B2M
ND4L
CYTB
ATP6
ND2
COX2
ND4
COX1
ND5
ATP8
ND1
GNAS
COX3

CELSR1
DPY19L1
HSD17B12
ABCC1
LIPA
ITGA5
CELSR2
HMGCR
ICAM1
CXCR4
IGFBP3
LDLR
PLAUR
GPRC5C
TGFBR2
PSEN1z score

0 +2–2

–1.0

–0.5

0

0.5

1.0

C
lu

st
er

in
g 

in
de

x

A
ll

Mean
only

Var.
only

–1.0

–0.5

0

0.5

1.0

C
lu

st
er

in
g 

in
de

x

A
ll

Mean
only

Var.
only

Detected spots

ND2COX1 RANATP6

sm-FISH

MitoTrackerbDNA sm-FISH
MitoTracker 

Distal, not
aggregated

Distal, 
aggregated

Polarized

Proximal

Spread out

z score

0 +2–2

Figure � | Quantitative signatures of the in situ transcriptome. (a) Overlap of the 5% smallest pairwise gene-gene distances with known gene interactions 
in STRING 9.0 and their respective P values. Data are shown for five different sets of features: (i) mean RNA spot count per cell (blue); (ii) mean RNA spot 
count per cell and features of its distribution (variability) (yellow); (iii) mean single-cell classification of localization patterns per gene and features of 
the classification distributions (light blue; see supplementary Fig. ��); (iv) mean spatial features of spots per gene and features of their distributions 
(salmon); and (v) the combination of all extracted features (black). See also supplementary Figure ��b. (b) Gene network (4,873 edges) obtained with 
the 5% smallest gene-gene distances derived from the combination of all features (black bar in a). Only connected genes are shown (96.8% of included 
genes). Node colors indicate genes encoding acetylated proteins (green), N-linked glycosylated proteins (blue), those that undergo both modifications 
(black) and others (gray). The bar graph indicates the fraction of edges that are also retrieved with three specific feature subsets, subsets ii–iv in a; 
color-coding as in a. Subregions in the network correspond to c (subregion 1), d (subregion 2) and supplementary Figure ��d,e (subregions 3 and 4). 
(c,d) Subregion 1, a tight cluster of genes encoded in the mitochondrial genome (red nodes, c); and subregion 2, a tight cluster of genes encoding cell-
adhesion receptors (purple nodes, d), signaling receptors (light blue nodes, d) or proteins involved in sterol metabolism (orange nodes, d). Subregion 2 
contains multipass membrane proteins (yellow-outlined nodes, d). z-scored mean classification distributions of cells for all five main types of single-cell 
spot localization patterns (specified at right) are shown as clustered heat maps. Bar graphs indicate the clustering index for three specific feature subsets, 
subsets ii–iv in a; color-coding as in a. (e) Subcellular localization of transcripts from the mitochondria-encoded genes ATP6, COX1 and ND2, as well as of 
the transcripts from RAN (which does not cluster in subregion 1), with respect to MitoTracker. Yellow circles are detected spots. Scale bars, 5 µm.
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cells must be sampled to obtain reproducible single-cell spot count 
distributions. We therefore compared random samples of increas-
ing number of single cells for each gene to a second sample from 
the same cell population and a sample derived from the biological 
replicate (Fig. 4a and Supplementary Fig. 11a). Across all tested 
genes, 100 cells sufficed to obtain reproducible measurements of 
the mean, variance and Fano factor (Pearson correlation of 0.997, 
0.951 and 0.910, respectively; Supplementary Fig. 11b). However, 
the third, fourth and fifth central moments required 215, 274 and 
1,764 single cells, respectively, to obtain a Pearson correlation of 
0.75 (Supplementary Fig. 11c). Furthermore, correlating whole 
spot count distributions revealed that at least 1,100 single cells were 
required to reach a high coefficient of determination (R2 = 0.8)  
for 80% of the genes when different samples from the same cell 
population were compared, and 1,800 cells were required for 
samples coming from different biological replicates (Fig. 4b and 
Supplementary Fig. 11d–g). Thus, for most genes in a nonsyn-
chronized unperturbed HeLa cell line, at least 1,000 single cells 
must be sampled to obtain reproducible single-cell distributions 
of transcript copy number.

Quantitative signatures of the in situ transcriptome
Finally, we wrote algorithms to harness the multivariate feature 
set quantifying subcellular localization and patterning of single 
transcripts within thousands of single cells. The first algorithm 
performs unsupervised clustering of all single cells to identify the 
main types of subcellular spot localization patterns, aiding bio-
logical interpretability (Supplementary Fig. 12, Supplementary 
Note 5 and Supplementary Software). In the generated data set, 
this algorithm revealed five main types of single-cell patterns: a 
polarized distribution, distal distribution, distal and aggregated 
distribution, proximal (perinuclear) distribution and spread-out 
distribution of spots (Supplementary Fig. 13). The second algo-
rithm maximizes the information contained within the multivari-
ate feature set by computing additional features describing the 
variability of the spot count per cell and the spatial distribution 
of spots (Supplementary Fig. 14, Supplementary Table 4 and 
Supplementary Note 6).

We then tested various combinations of the information 
obtained from these two algorithms to evaluate their ability 
to cluster genes that are functionally associated in a database  
of known and predicted protein interactions (STRING v.9.0; 
ref. 28) (Supplementary Fig. 14). This analysis revealed that 
quantitative information about subcellular patterns and spatial 
properties of transcripts and their variability across single cells 
were more powerful at identifying functional interactions than 
were features of mean spot count and its variability (Fig. 5a and 
Supplementary Fig. 15a,b).

We next created a network (Fig. 5b) from the top 5% of calcu-
lated gene-gene distances on the basis of their similarity in tran-
script features. The majority of edges in this network could be 
derived from spatial features and their variability (Fig. 5b and 
Supplementary Fig. 15c). Globally, genes that encode acetylated 
proteins translated in the cytosol separated from genes that encode 
N-linked glycosylated proteins translated at the endoplasmic 
reticulum (ER). Extensive subclustering within these two domains 
indicated that our feature set revealed details of subcellular pat-
terning of transcripts and its cell-to-cell variability with functional 
relevance beyond general differences in translation sites.

A specific isolated region in the network (Fig. 5b) was formed 
by a tight subcluster of 11 of the 13 mRNA-coding genes encoded 
by mitochondria and showed an enrichment of cells with a spread-
out and a distal distribution of transcripts (Fig. 5c). This subclus-
ter was distinguished from its immediate surrounding by features 
of subcellular patterning as well as of spatial properties and their 
variability (Fig. 5c), whereas features of transcript abundance and 
variability did not contribute to this subclustering. Further analy-
sis revealed that whereas transcripts of ATP6, COX1 and ND2 
localized to stained mitochondria, transcripts of RAN, which is 
not part of this cluster (although it was nearby in the network), 
fell outside of the stained mitochondria (Fig. 5e).

The region of the network consisting of genes encoding  
N-linked glycosylated proteins also showed subclustering. One 
of these subclusters (Fig. 5d) consisted of genes encoding pro-
teins involved in sterol metabolism and cell adhesion, and sign-
aling receptors. The majority of these were multipass membrane 
proteins. This subcluster displayed an enrichment for cells with 
a perinuclear distribution of transcripts (Fig. 5d), a result con-
sistent with localization to the ER28. The subcluster was dis-
tinguished from its immediate surroundings in the network by 
spatial properties and their variability, suggesting localization 
at specific subdomains of the ER. Features of transcript abun-
dance alone would prevent this subclustering (Fig. 5d). Also, the 
region in the network enriched for acetylated proteins displayed 
further subclustering (Fig. 5b), with one subcluster of genes 
encoding ribosomal proteins and proteins involved in glyco-
lysis and energy production and another subcluster of genes 
encoding proteins involved in endocytosis and ubiquitination 
(Supplementary Fig. 15d,e).

Taken together, the extracted feature set contains multiple types 
of information about specific in situ signatures of the transcrip-
tome. In particular, features of subcellular localization and pat-
terning and their variability allow the unbiased identification of 
functional interactions between genes without the need for any 
perturbation or costaining.

discussion
We have demonstrated the feasibility of large-scale image-based 
transcriptomics by applying sm-FISH in an automated high-
throughput manner in human tissue culture cells, achieving com-
parable results to RNA-seq at the mean expression level. Most of 
the bDNA sm-FISH reagents used in this study were produced 
by Affymetrix upon our request and have since become avail-
able to other customers, thereby making our approach readily 
accessible. Currently, bDNA sm-FISH shows limited detection 
of nuclear transcripts, has less dynamic range than RNA-seq 
for high-abundance transcripts and may, for a few transcripts, 
obtain aberrant readouts. Another limitation is the small number 
of different transcripts that can be quantified in the same single 
cell compared to that by single-cell RNA-seq, which can achieve 
quantification of more than 6,000 transcripts per cell8. However, 
the bDNA signal amplification tree may allow extensive barcod-
ing, which could be exploited for single-cell multiplexing in the 
near future29–31.

High-throughput bDNA sm-FISH scales dramatically better 
than single-cell RNA-seq in the number of single cells that can be 
measured within the same sample8, which is important for repro-
ducible measurements of cell-to-cell variability in RNA transcript 
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abundance. It is also more sensitive than single-cell RNA-seq for 
low-abundance transcripts, reveals absolute copy numbers and 
allows the quantification of multivariate features of transcript pat-
terning within and across thousands of single cells. Our analysis 
of these features revealed that shared properties of the variability 
in subcellular transcript localization across unperturbed single 
cells outperform cell-to-cell variability in transcript abundance 
in retrieving functional associations between genes.

Further development in the types of analysis shown here com-
bined with perturbation experiments will increase the power of 
this approach. We expect that high-throughput bDNA sm-FISH 
will find broad applications as it can be directly included in vari-
ous image-based approaches. This will enable a more direct exam-
ination of the causal links between molecular and phenotypic 
cell-to-cell variability.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Cell culture. HeLa Kyoto cells were kindly provided by 
J. Ellenberg (EMBL, Heidelberg). Cells were tested for identity 
by karyotyping and tested for absence of mycoplasma before use. 
Culturing was done in DMEM (Gibco) supplemented with 10% 
FCS and glutamine (complete medium). Seeding was at a density 
of 700 cells per well when using 384-well plates (Greiner) and 
10,000 cells per well when using a LabTek chambered #1.0 boro-
silicate coverglass system of eight chambers. Cells were incubated 
for 3 d at 37 °C, 95% humidity and 5% CO2. For image-based 
transcriptomics, a full cell culture was regrown from a single cell 
in six passages, after which cells were harvested, frozen and kept 
at −80 °C until use. Only cells imaged at 100× magnification were 
grown in LabTek chambers.

Microscopy. For high-magnification oil-immersion imaging, we 
used a Nikon Eclipse Ti inverted fluorescence microscope, an Apo 
TIRF 100× objective (Nikon) of 1.49 NA and an EMCCD camera 
(ImageEM 1K C9100-14, Hamamatsu). High-throughput in situ 
transcriptomics imaging, was done with an automated spin-
ning disk microscope from Yokogawa (CellVoyager 7000), with 
an enhanced CSU-X1 spinning disk (Microlens-enhanced dual 
Nipkow disk confocal scanner, wide view type), a 40× Olympus 
objective of 0.95 NA, and a Neo sCMOS cameras (Andor, 2,560 × 
2,160 pixels), acquiring 49 sites per well and ten z planes per site 
spanning 9 µm (Supplementary Table 5). The number of z planes 
was chosen so that every spot was visible in at least two planes as 
described previously20. The primary probe pair saturation curves 
were measured with an ImageXpress Micro fluorescence micro-
scope (Molecular Devices), a Plan Apo 40× objective (Nikon) of 
0.95 NA and a CoolSNAP HQ camera.

Oligonucleotide single-molecule RNA FISH. Quasar 570–
labeled oligonucleotide Stellaris FISH RNA probes targeting 
TFRC, MYC and ERBB2 mRNA were obtained from Biosearch 
Technologies. Probe hybridization was performed as indicated 
by the manufacturer.

Branched DNA single-molecule RNA FISH. All gene-specific 
primary probe pairs, amplification systems and custom-designed 
probes for measurement of saturation curves and double-labeling  
experiments were purchased from Affymetrix upon specific 
request and have since been made commercially available. 
Experiments were performed following the Supplementary 
Protocol. In the signal-saturation experiments, 15 individual 
primary probe pairs targeting ERBB2 and HPRT were acquired 
from Affymetrix. Probe pairs were then combined in such a way 
to generate 30 primary probe-pair combinations per gene span-
ning a range of 1–15 targeted sites per gene. bDNA sm-FISH was 
then performed as described in the Supplementary Protocol. 
For acetic acid experiments, glacial acetic acid was added at the 
required [v/v]% to the fixation solution (4% paraformaldehyde 
in PBS).

Calculation of signal-to-noise ratios. Spot detection of 
100×-magnification images was done as described in the 
Supplementary Note 2, although no spot bias correction was 
applied. Calculation of the signal-to-noise ratio is described in 
Supplementary Note 1.

Library construction. The final library was composed of probes 
against 925 human genes of general interest (Supplementary 
Table 2), probes against three positive-control genes (ERBB2, 
HPRT and ACTB) covering a wide range of expression levels 
and probes against a bacterial gene (dapB) as negative control.  
The library was mostly composed of QuantiGene View RNA type 
I primary probe pairs, although some genes were targeted with 
QuantiGene View RNA types VI, VIII or X. Primary probes for 
all genes were then organized in six 384-well plates according to 
plate layout in the Supplementary Protocol. Aliquots in such 
plates were diluted 1:5 and then 1:10 to arrive at the working 
concentration of primary probe sets.

siRNA gene knockdown. Validated siRNAs targeting ERBB2 
(SI02223571, Hs_ERBB2_14), MYC (SI00300902, Hs_MYC_5) 
and TFRC (SI00301896, Hs_TFRC_5) were obtained from 
Qiagen. Reverse transfection was done using Lipofectamine2000 
(Invitrogen) according to the manufacturer’s specifications. Cells 
were fixed 3 d after transfection for bDNA sm-FISH.

Quantitative reverse-transcription PCR. RNA was extracted 
with the RNeasy mini kit including the optional on-column 
DNA digestion (Qiagen) and reverse transcribed with oligo(dT) 
primers using the Transcriptor High Fidelity cDNA Synthesis kit 
(Roche) according to the manufacturers’ protocols. Real-time 
PCR was done with a Mesa Green qPCR Mastermix Plus for Sybr 
Assay (Eurogentec) with the following primers. hs_TFRC_fwd: 
catttgtgagggatctgaacca; hs_TFRC_rev: cgagcagaatacagccactgtaa; 
hs_ERBB2_fwd: agaccatgtccgggaaaacc; hs_ERBB2_rev: caggtagc 
tcatccccttgg; hs_MYC_fwd: cgactctgaggaggaacaagaa; hs_MYC_
rev: actctgaccttttgccaggag; hs_TBP_fwd: gcccgaaacgccgaatata; 
hs_TBP_rev: cgtggctctcttatcctcatga; hs_EEF1A1_fwd: agcaaaaa 
tgacccaccaatg; hs_EEF1A1_rev: ggcctggatggttcaggata.

Image analysis. All images were analyzed with the image analy-
sis software CellProfiler19. Methods required for this study were 
implemented in Matlab and, when possible, as new CellProfiler 
modules (see Supplementary Software). Nuclei were segmented 
using images from the 4,6-diamidino-2-phenylindole (DAPI) 
staining. The cell outlines were then identified using the water-
shed algorithm. Spot detection was carried out as described in 
Supplementary Note 2. Standard CellProfiler features for inten-
sity, size and texture were then extracted for nuclei and cells. 
For data cleanup, we applied supervised machine learning with 
CellClassifier22,23 to exclude cells showing segmentation problems 
or aberrant staining, undergoing mitosis or being multinucleated. 
Computational image analysis was done using the Brutus high-
performance computing cluster (ETH Zurich) and the compu-
tational task manager iBRAIN23. All modules and source code 
developed for this project can be downloaded at https://github.
com/pelkmanslab/.

RNA-seq. Total RNA was extracted from cell lysates using the 
RNeasy mini kit (Qiagen) with on-column digestion of DNA as 
specified by the manufacturer. Transcriptome sequencing was per-
formed by LC Sciences. Briefly, RNA quality was assessed using the 
RNA 600 LabChip (Agilent). Sample preparation was done using 
the TruSeq RNA Sample Prep Kit v.2 (RS-122-2001, Illumina) as 
specified by the manufacturer. Enrichment for polyadenylated 

https://github.com/pelkmanslab/
https://github.com/pelkmanslab/
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RNA was done using poly(T) beads, and cDNA was obtained from 
random primers after RNA fragmentation. Sequencing was done 
using a HiSeq 2000 sequencer from Illumina. Read alignment was 
done using Bowtie v.0.12.7 (ref. 32) against the human genome 
(hg19), and FPKM values were generated using TopHat v.1.3.2 
(ref. 33) and Cufflinks v.1.3.0 (ref. 34). The FPKM value for a 
given gene was derived by adding all FPKM values assigned to all 
transcripts of the gene (Supplementary Table 6). For both RNA-
seq replicates we obtained ~1.1 × 108 mappable reads, of which 
~1.01 × 108 were mapped to exons, ~5.6 × 107 reads mapped to 
spanning exons and ~8.8 × 106 reads mapped to introns.

Estimation of boundary between low- and high-expressed 
transcripts. A Gaussian mixture model of corrected mean spots 
per cell was learned assuming two distributions representing 
the low- and high-expressed transcripts, respectively. Modeling 
was done using Matlab. The boundary between the two distribu-
tions was set where the probability of being low expressed or 
high expressed given a mean spot number per cell was equal, 
i.e., P(w1|x) = P(w2|x), where w1 and w2 are the low- and high-
expressed gene classes, respectively, and x represents a given mean 
spot number per cell. The computation of the boundary was boot-
strapped 1,000 times with replacement. Then the mean boundary 
value and its s.d. were calculated.

Outlier detection in bDNA sm-FISH vs. RNA-seq com-
parison. Calculation of the fraction of cells with spot counts 
above background and mean spot per cell correction was per-
formed according to Supplementary Note 4. The correlation 
plot obtained from log10(FPKM), and corrected log10(spots per 
cell) was regressed using robust LOESS with the Computational 
Statistics Matlab library35. The shortest distance to the regression 
line was measured for every gene, and outliers were defined as 
those points whose distance was bigger than two times the s.d. 
of all distances.

Calculations of upper and lower detection limits. Conversion 
of log10(FPKM) to log10(spots per cell) was done by linear regres-
sion and extrapolation with the 601 genes whose expression 
agreed between RNA-seq and high-throughput bDNA sm-FISH. 
Regression was done with the Matlab Statistics Toolbox “regress” 
function. Cumulative fractions were calculated by 1,000 bootstrap 
random samples of 301 genes without replacement, and upper and 
lower limits of detection were set to the 0.99 and 0.01 cumulative 
fractions. P values were calculated using a two-sample t-test.

Estimation of the minimal amount of cells required for repro-
ducible cell-to-cell variability. For those transcripts whose mean 
spot count per cell agreed well with RNA-seq with uncorrected 
spot counts (612 genes, not shown), we randomly sampled an 
increasing equal number of cells from each of the two biologi-
cal replicate experiments. We then calculated the distribution of 
single cells in each of the samples from zero spots per cell to the 
highest number of spots per cell, using a bin size of one spot. The 
Pearson correlation between two distributions within a replicate 
or between the two replicates was then measured. The procedure 
was bootstrapped 100 times, and correlation values were com-
puted for every gene and every sampling size, from which the 
R2 was then computed. We calculated the Pearson correlation of 

distribution mean, variance, Fano factor and central moments 
over all genes at each sampling size for two distributions sampled 
(i) within a replicate or (ii) between the two replicates. The pro-
cedure was bootstrapped 100 times.

Estimation of percentage of genes with highly reproduc-
ible multivariate transcript readouts. For each multivariate  
readout of each gene, its mean ranked distance to its replicate  
was obtained. This was done by comparing the Euclidean  
distance of a given gene to all genes of the replicate assay in a 
given feature space. The ranked distance to the replicate of the  
same gene was determined. To account for each gene being tested 
twice, we used for each the mean distance of each replicate.  
A readout of a gene was defined as highly reproducible when 
its replicate readout was within the 5% closest distances, unless 
otherwise specified.

Network construction from the 5% smallest gene-gene dis-
tances. Feature selection as described in Supplementary Note 6  
was performed for genes whose mean raw spot count in both 
replicate assays was at least ten spots per cell and whose raw spot 
count correlated well with RNA-seq counts (442 genes). For each 
set of features from individual repetitions of feature selection, 
Euclidean distances between genes were calculated on features 
normalized by z-scoring over all genes included in the feature 
selection. To account for differences in the total amount of fea-
tures and, thus, the absolute Euclidean distance between individ-
ual rounds of elimination, we normalized the Euclidean distances 
by taking the square root of the square of the Euclidean distances 
divided by the number of features. The normalized distances at 
this point were averaged over all 60 iterations for each starting 
feature set to obtain a mean dissimilarity matrix. Next, gene-gene 
distances were defined as the Euclidean distance between genes 
using the mean dissimilarity matrix and then ranked with the 
smallest distance obtaining rank 1 while excluding similarities of a 
gene to itself. For network analysis, the top 5% ranking gene-gene 
distances for every feature set were used.

Calculation of the clustering index for network nodes in sub-
regions. Networks built from different feature sets after selec-
tion were used for the calculation of the clustering index between 
nodes G (genes) belonging to the four subregions of interest 
(Fig. 5b). For every network, edges connecting the G nodes were 
defined in two categories: k edges that connect G nodes to other 
G nodes, i.e., these edges connect genes that are within a given 
subregion, or q edges that connect G nodes to other nodes in the 
network, i.e., genes that are outside the given subregion. Then the 
clustering index I is given by the following expression:

I

K Q K
K Q
n

i i i

i i
i
ng

g
=

−
+=∑ ( )sgn( )

1

where ng is the number of G nodes in the given subregion, Ki 
is the number of k edges connecting a given Gi node, Qi is the 
number of q edges connecting a given Gi node, and sgn(Ki) is a 
sign function whose value is 0 when Ki = 0 and 1 when Ki > 0. 
Thus the clustering index will be positive if the given G nodes 
have on average more k edges than q edges.
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Calculations of enrichments in STRING 9.0. The reference data 
set was obtained from the STRING 9.0 database (http://string-
db.org/). For each gene-gene distance, the presence of a reported 
interaction in STRING was determined. For every feature set, the 
overlap was defined as the fraction of gene-gene distances that 
was present in STRING 9.0 and whose distance was smaller than 
the indicated distance. P values are given by the hypergeometric 
probability density function and are the sum of the P values of all 
possibilities that yield at least the observed amount of overlapping 
gene-gene interactions.

Network analysis. Network analysis and automated force-
directed visualization was performed using Cytoscape36. Heat 
maps displaying clustered fractions of cells of the five main types 
of single-cell spot localization patterns for the example network 
subregions in Figure 5c,d and Supplementary Figure 15d,e were 
derived from the z-scored means of the classification distributions 
for every pattern type. (Supplementary Note 6). Hierarchical 
clustering using a Euclidean distance and average linkage was 
performed in Matlab.

Statistical analysis. The bootstrapped samples obtained from cal-
culation of fraction of cells above background (Supplementary 
Note 4) for every replicate gene was compared to the distribu-
tions of fractions expected by random using the Mann-Whitney-
Wilcoxon test implemented in Matlab. The P values obtained were 
corrected for multiple testing using the Holm-Bonferroni method. 
To identify genes with fractions of cells above background, we set 
a conservative significance value of P = 10−4.
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