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Abstract Blood testing using Circulating Tumor Cells (CTCs)
has emerged as one of the hottest fields in cancer diagnosis.
Research on CTCs present nowadays a challenge, as these cells
are well defined targets for understanding tumour biology and
improving cancer treatment. The presence of tumor cells in
patient’s bone marrow or peripheral blood is an early indicator
of metastasis and may signal tumor spread sooner than clinical
symptoms appear and imaging results confirm a poor progno-
sis. CTC enumeration can serve as a “liquid biopsy” and an
early marker to assess response to systemic therapy. Definition
of biomarkers based on comprehensive characterization of
CTCs has a strong potential to be translated to individualized
targeted treatments and spare breast cancer patients unneces-
sary and ineffective therapies but also to reduce the costs for the
health system and to downsize the extent and length of clinical
studies. In this review, we briefly summarize recent studies on
the molecular characterization of circulating tumor cells in
breast cancer and discuss challenges and promises of CTCs
for individualized cancer treatment.
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1 Introduction

The identification of prognostic and predictive biomarkers
that will help in selecting the optimal therapeutic strategy

for each cancer patient according to individual’s relapse risk
is essential for avoiding both over-treatment and under-
treatment. At present, the success or failure of anti-cancer
therapies is only assessed retrospectively by the absence or
presence of overt metastases during the post-operative
follow-up period. Current research on circulating tumor
cells (CTCs) is focusing on their molecular characterization
and on the identification of potential diagnostic and thera-
peutic biomarkers expressed in these cells. CTC are well-
defined targets for understanding tumour biology and tu-
mour cell dissemination and hold the promise of playing a
role of “liquid biopsy” which may allow physicians to
follow cancer changes over time and tailor treatment [1].

European groups have firstly shown the prognostic im-
pact of disseminated tumor cells (DTC) in the bone marrow
of breast cancer patients [2] and that CTC detection and
enumeration is correlated with decreased progression-free
survival and overall survival in operable [3–7] and advanced
breast cancer [8]. Detection of post-chemotherapy CTCs in
breast cancer patients was also shown to be of prognostic
significance [9]. Nowadays, CTCs are associated with prog-
nosis in many human cancers such as breast, lung, and
prostate, and their enumeration is used for repeated follow-
up examinations [10, 11]. Most of these studies have been
based on the epithelial properties of CTC and their isolation
and detection through epithelial markers like EpCAM and
CK-19 [1–11].

Molecular characterization of CTC presents a very hot
topic in cancer research nowadays [12] since it is important
not only to confirm their malignant origin but also to iden-
tify diagnostically and therapeutically relevant targets
expressed in these cells and help stratifying cancer patients
for individual therapies [10–14]. Characterization of these
cells might contribute to the identification of metastatic stem
cells among CTC with important implications for the
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development of improved therapies in the near future [15].
Also motivating the interest in CTCs has been the recent
development of molecularly targeted cancer therapies that
work best on patients whose tumors have a particular mu-
tation [16]. Complete genomic profiles and expression pat-
terns have to be considered in order to understand the
biological properties and the molecular characteristics of
CTCs, as well as their connection to cancer stem cells
[15]. Molecular characterization of CTCs, while important
for the identification of diagnostically and therapeutical-
ly relevant targets that could help stratifying cancer
patients for individual therapies, is difficult to address
since they are very rare and the amount of available
sample is very limited.

Currently there is a plethora of analytical methodologies
for isolating and detecting CTCs. However, there are still a lot
of analytical challenges to be solved. Since CTCs are very rare
in most cases, they are specifically detected by using a com-
bination of two steps: (a) isolation enrichment and (b) detec-
tion. Detection strategies include detection at the cellular and
protein level through immunological approaches and imaging
systems, and molecular assays like RT-PCR andmultiplex RT-
PCR through the detection of gene expression in CTCs. The
most important limitation of all available methodologies for
CTC analysis is the required amount of sample and the small
number of gene targets that can be analyzed [17–19]. Recent
technical advancements in CTCs detection and characteriza-
tion include highly sensitive RT-qPCR methods [20–22],
image-based approaches like the FDA cleared CellSearch
system [8, 23], or a combination of molecular and imaging
methods [24]. Many different new devices have been devel-
oped and are now commercially available for CTC isolation
from blood. A membrane microfilter device was introduced
for single-stage capture and electrolysis of circulating tumor
cells [25], and a microchip for CTC isolation and analysis was
developed [26].

The detection, enumeration, and isolation of CTCs have
considerable potential to influence the clinical management
of cancer patients. However, there is still a lot to be done for
the automation, standardization, quality control, and accred-
itation of analytical methodologies used for CTC detection
and molecular characterization [27, 28]. There is a substan-
tial variability in the rates of positive samples using existing
isolation and detection techniques. Different detection meth-
ods lead to different results as shown by the comparative
analysis of the same patient samples with different technol-
ogies. Thus, the clinical results largely depend on the tech-
nology used to isolate and detect CTCs. Despite the fact that
most of these methods are highly specific and sensitive, there
are not so far extensive studies especially designed to compare
their efficacy when using the same clinical samples. This is an
important issue for using CTC in the clinic, since especially in
early disease differences in analytical sensitivity between

these methods can play a very critical role. The lack of
standardization and validation of technology hampers the
implementation of CTC measurement in clinical routine
practice [27, 28].

2 Molecular characterization of CTC in breast cancer

CTCs are highly heterogeneous as has already been shown
both through imaging and molecular methods. This is highly
important especially in the case that therapeutic targets are
expressed in CTCs and not in the primary tumor. However,
the importance of CTC heterogeneity has not been fully
exploited clinically as yet. Here we summarize the recent
progress on the molecular characterization of CTC in breast
cancer (Fig. 1).

2.1 HER-2

There is now a growing body of evidence that human
epidermal growth factor receptor (HER-2) status can change
during disease recurrence or progression in breast cancer
patients. Based on this, re-evaluation of HER-2 status by
assessment of HER-2 expression on CTCs is a strategy with
potential clinical application. HER-2 analysis in CTCs
may have clinical significance for HER-2-targeted ther-
apy as HER2-positive CTCs and DTCs can be detected
in patients with HER2-negative primary tumors who
currently do not have access to HER-2-targeted therapy.
A quantitative analysis by confocal microscopy assay
for evaluation of HER-2 expression in individual tumor
cells has shown that there was a significant positive
correlation between HER-2 overexpression and gene
amplification in individual CTCs [29].

Many studies and different groups have evaluated HER-2
expression on CTC in breast cancer patients [13, 14, 30–35].
Early on as in 2004, it was shown that therapy-resistant CK-
19 mRNA-positive cells in peripheral blood could be effec-
tively targeted by trastuzumab administration [13, 14].
HER-2-positive CTCs have been detected in patients with
HER-2-negative tumors; nevertheless, their presence was
more common in women with HER-2-positive disease
[34]. According to a recent prospective multicenter trial,
HER-2-positive CTCs can be detected in a relevant number
of patients with HER-2 negative primary tumors [31].

This finding has been confirmed by other groups as
well [36, 37]. Punnoose et al. report that in the majority
of patients (89 %), there was a concordance between
HER-2 status in CTC, and in the primary tumor tissue,
though in a subset of patients (11 %), HER-2 status in
CTCs differed from that observed in the primary tumor
[38].
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2.2 ER/PR

The expression of predictive markers including the estrogen
(ER) and progesterone receptor (PR) expression can change
during the course of the disease. Therefore, reassessment of
these markers at the time of disease progression might help
to optimize treatment decisions. When the expression of ER
and PR was assessed in CTCs by RT-PCR, Fehm et al.
report that interestingly, the spread of CTCs was mostly
found in triple-negative tumors and CTCs in general were
mostly found to be triple-negative regardless of the ER, PR,
and HER-2 status of the primary tumor [30]. They state that
(a) due to the weak concordance between CTCs and DTCs,
the clinical relevance may be different; (b) the biology of the
primary tumor seems to direct the spread of CTCs; and (c)
since the expression profile between CTCs and the primary
tumor differs, the consequence for the selection of adjuvant
treatment has to be evaluated. By evaluating the expression
of ER and PR receptors on CTC in blood of metastatic
breast cancer patients, Tewes et al. could predict therapy
response in 78 % of cases [32].

Aktas et al. compared the hormone receptor status ex-
pression profile of CTCs with the primary tumor in meta-
static breast cancer patients. Most of the CTCs were ER/PR-
negative despite the presence of an ER/PR-positive primary
tumor. According to their findings, in the metastatic setting,
the phenotype of CTC reflects the phenotype of metastatic
disease; therefore, palliative treatment selected based on the
expression profile may not be effective since the phenotype
has changed during disease progression [39]. According to

another very recent study aimed to investigate the influence
of removal of the primary tumor on incidence and pheno-
type of circulating tumor cells in primary breast cancer, the
most common CTC phenotype was triple negative followed
by HER2+/ER−/PR− subtype and ER and/or PR positive,
while 95 % of the corresponding primary tumors were ER
and PR positive. They found that CTC phenotype before
and after the surgery generally remains identical but may
differ from that of the primary tumor [40]. The same was
confirmed by another study, comparing transcript levels in
CTCs with those measured in corresponding primary tumors
that showed clinically relevant discrepancies in estrogen
receptor and HER-2 levels [37].

2.3 Stemness and EMT markers

The persistence of CTC in breast cancer patients might be
associated with stem cell-like tumor cells which have been
suggested to be the active source of metastatic spread in
primary tumors. Furthermore, these cells also may undergo
phenotypic changes, known as epithelial–mesenchymal
transition (EMT), which allows them to travel to the site
of metastasis formation without getting affected by conven-
tional treatment [41, 42]. During cancer progression, malig-
nant cells undergo EMT and mesenchymal–epithelial
transitions as part of a broad invasion and metastasis pro-
gram. EMT is characterized by upregulation of vimentin,
Twist, Snail, Slug, and Sip1 among others. Recently, it was
shown that the induction of EMT program not only allows
cancer cells to disseminate from the primary tumor but also
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Fig. 1 Recent progress on the
molecular characterization of
CTC in breast cancer
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promotes their self-renewal capability [43]. Furthermore,
the expression of stemness and EMT markers in CTCs
was associated with resistance to conventional anti-cancer
therapies and treatment failure, highlighting the urgency of
improving tools for detecting and eliminating minimal re-
sidual disease [43]. Though the relationships between EMT
and CTCs remains largely unexplored, data validating the
implication of EMT processes in CTC formation and animal
models with transplantable human breast tumor cells to help
characterizing EMT/CTC relationships have been recently
reviewed [43].

The detection of cells in mesenchymal transition, retain-
ing EMT and stemness features, may contribute to discover
additional therapeutic targets useful to eradicate micrometa-
static disease in breast cancer. However, most currently used
methods to detect and enumerate CTCs rely on the expres-
sion of EpCAM and cytokeratins, and this selection may
exclude cells that have undergone intrinsic modifications of
their phenotype, as EMT. Because of the frequent loss of
epithelial antigens by CTC, assays targeting epithelial anti-
gens may miss the most invasive cell population; thus, there
is an urgent need for optimizing CTCs detection methods
through the inclusion of EMT markers [44]. Many groups
are now working on elucidating the connection between
CTC and cancer stem cells as well as EMT markers on
CTC. Many different recent studies have shown that subsets
of CTCs have a putative breast cancer stem-cell phenotype
and express EMT markers. Balic et al. were the first to show
that the majority of occult metastases in the bone marrow
are cancer stem cells [45]. Aktas et al. studied the expres-
sion of the stem cell marker ALDH1 and markers for EMT
in CTC of metastatic breast cancer patients and correlated
these findings with the presence of CTC and response to
therapy. Their data indicate that a major proportion of CTC
of metastatic breast cancer patients shows EMT and tumor
stem cell characteristics [46].

The expression of CD44, CD24, and ALDH1 on CTCs of
patients with metastatic breast cancer was also verified by
using triple-marker immunofluorescence microscopy [47].
Raimondi et al. investigated the expression of EMT and
stemness markers in CTCs from breast cancer patients in
all stages of disease. They found that the expression of
ALDH1 on CTCs correlated to the stage of disease and to
the expression of vimentin and fibronectin [48]. The gain of
mesenchymal markers in CTC was correlated to prognosis
of patients and predicted more accurately worse prognosis
than the expression of cytokeratins alone [49]. Armstrong et
al. found that more than 75 % of CTCs from women with
metastatic breast cancer coexpress CK, vimentin, and N-
cadherin [50]. TWIST-1 expression on CTC was also shown
in patients with early and metastatic breast cancer by quan-
titative RT-PCR and liquid bead array [51, 52]. When the
expression of Twist and vimentin in CTCs of metastatic and

early breast cancer patients was investigated by using
double-immunofluorescence experiments in isolated periph-
eral blood mononuclear cell cytospins using anti-cytokeratin
(anti-CK) anti-mouse (A45-B/B3) and anti-Twist or anti-
vimentin anti-rabbit antibodies, a significant correlation
was found between the number of CTCs expressing
Twist and vimentin within the same setting [53]. The
high incidence of these cells in metastatic disease com-
pared to early stage breast cancer strongly supports the
notion that EMT is involved in the metastatic potential
of CTCs [53]. Further studies are needed to prove
whether these markers might serve as an indicator for therapy
resistant tumor cell populations and, therefore, an inferior
prognosis.

2.4 Angiogenesis

Using double staining experiments and confocal laser scan-
ning microscopy, Kallergi et al. have shown that the expres-
sion of pFAK, HIF-1alpha, VEGF, and VEGF2 in CTCs of
patients with metastatic breast cancer could explain the
metastatic potential of these cells and may provide a novel
therapeutic target for their elimination [24].

2.5 EGFR and phosphoinositide-3 kinase/AKT pathway
markers in CTC

Studies of epidermal growth factor receptor (EGFR)
expression in breast cancer have shown inconsistent
results due in part to a large range of methods used.
Anti-EGFR therapy trials have often not used patient
selection because of this. Measurement of EGFR on the
surface of CTCs, derived from individuals with meta-
static breast cancer patients, is possible using the Cell-
Search system. Payne et al. have used this system to
enumerate and measure EGFR expression on the surface
of CTCs, derived from the peripheral blood of individ-
uals with metastatic breast cancer over time [54]. Al-
though a proof for the clinical significance of EGFR-
positive circulating tumor cells is currently lacking,
expression of EGFR may predict response to lapatinib-
based treatments as in a case recently presented by Liu
et al. [55]. The results of these studies should be
validated in prospective studies aiming to identify
patients for anti-EGFR therapy based on the expression
profile of CTCs.

The phosphoinositide-3 kinase (PI3K)/Akt pathway, op-
erating downstream of EGFR and HER2, is implicated in
cell migration and survival. EGFR and HER2 are expressed
in circulating tumor cells, but the activation status of down-
stream signaling molecules has been addressed in just a few
studies up to now. In the first study performed, Kallergi et
al. focused on the phenotypic profile of micrometastatic
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cells in peripheral blood mononuclear cells preparations
from breast cancer patients. In these samples, they studied
the expression of phosphorylated FAK (p-FAK), phosphor-
ylated PI-3 kinase (p-PI-3K), and HER2 using confocal
laser scanning microscopy. The expression of p-FAK was
documented in all CK-positive samples, while all CK-
negative samples were tested negative for p-FAK. p-PI-3K
was documented in a high percentage (88 %) of CK- and p-
FAK-positive samples. Immunoblot analysis of micrometa-
static cells in co-culture with PBMC confirmed the specific
expression of both p-FAK and p-PI-3K. Finally, impaired
actin organization was apparent in CK- and p-FAK/p-PI-3K-
positive samples, comparable to that observed in MCF-7
human breast cancer cells. These findings provide strong
evidence that micrometastatic cells express activated signal-
ing kinases, which may regulate migration mechanisms,
supporting the presumption of their malignant and meta-
static nature [56]. The same group has further investigated
the expression levels of EGFR, HER2, PI3K, and Akt in
CTC. Their findings demonstrated that circulating tumor
cells express receptors and activated signaling kinases of
the EGFR/HER2/PI3K/Akt pathway, which could be used
as targets for their effective elimination [57]. In a very recent
paper, Kasimir-Bauer et al. studied the expression of the
stem cell marker ALDH1 and markers of the PI3K/AKT
pathway in CTCs of 502 patients and found that a subset of
primary breast cancer patients shows EMT and stem cell
characteristics. They conclude that the currently used detec-
tion methods for CTCs are not efficient to identify a subtype
of CTCs which underwent EMT [58].

2.6 Mammaglobin

Mammaglobin A is a highly specific molecular marker for
the detection of circulating tumor cells in breast cancer,
since it is specifically expressed in the mammary tissue.
Mammaglobin expression has been reported in CTCs by
many groups [6, 59–63]. According to Ignatiadis et al., the
detection of peripheral blood CK19mRNA+ and
MGB1mRNA+ cells before adjuvant chemotherapy predicts
poor DFS in women with early breast cancer [6]. Study of
the expression of mammaglobin in CTC offers specificity
and could be a valuable tool for monitoring breast cancer
patients during and after therapy [60, 61]. Since the relative
expression of this gene in CTC is very low, very low
percentages for mammaglobin expression have been
reported in CTC [51, 52]. According to Marques et al.,
MAM mRNA detection at diagnosis or during follow-up
does not predict breast cancer recurrence [62]. On the con-
trary, according to a very recent study by Reinholz et al., a
decrease in MGB1+ mRNA CTCs may help predict re-
sponse to therapy of MBC patients [63].

2.7 DNA methylation in CTC

Very recently, Chimonidou et al. have shown for the first
time that tumor suppressor and metastasis suppressor genes
are epigenetically silenced in CTCs isolated from peripheral
blood of breast cancer patients [64]. They tested DNA
extracted from the EpCAM-positive immunomagnetically
selected CTC fraction and found by methylation-specific
PCR that the promoter sequences of (a) cystatin M
(CST6), an endogenous inhibitor of cathepsins B and L that
is postulated to be a tumor suppressor in breast cancer [65]
and its promoter methylation provides important prognostic
information in patients with operable breast cancer [66];
(b) breast cancer metastasis suppressor 1 (BRMS1), a
predominantly nuclear protein that differentially regu-
lates expression of multiple genes, leading to suppres-
sion of metastasis without blocking orthotopic tumor
growth [67], and coordinately regulates expression of multiple
metastasis-associated miRNAs [68]; and (c) SRY-box con-
taining gene 17 (SOX17) that plays a tumor suppressor role
through suppression of Wnt signaling [69] are highly methyl-
ated. These findings add a new dimension to the molecular
characterization of CTCs and may underlie the acquisition of
malignant properties, including their stem-like phenotype
[64].

3 Molecular characterization of CTC and individualized
targeted therapies

Definition of biomarkers based on comprehensive charac-
terization of CTCs has a strong potential to be translated to
individualized targeted treatments and spare breast cancer
patients unnecessary and ineffective therapies but also to
reduce the costs for the health system and to downsize the
extent and length of clinical studies. At present, the success
or failure of anti-cancer therapies is only assessed retrospec-
tively by the absence or presence of overt metastases during
the post-operative follow-up period. However, overt metas-
tases are, in general, incurable by most current therapies.
Molecular characterization of CTCs may identify patients
most likely to be cured with aggressive therapy, as well as
patients with a propensity for systemic failure. This infor-
mation may be used to match patients with the most appro-
priate treatment strategy including combinations of local
and systemic therapy.

In metastatic breast cancer, the prognostic value associ-
ated with the detection of CTCs raise additional issues
regarding the biological value of this information. A drug-
resistance profile of CTCs, which is predictive of response
to chemotherapy, independent of tumor type and stage of
disease was recently identified and therefore could be used
for patient selection [70]. Drug-resistant CTCs have
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predictive value in metastatic breast cancer and possibly
retain stem-like properties. Very recently it was found that
in metastatic breast cancer, the presence of CTCs expressing
multidrug-resistance-related proteins, and ALDH1, is pre-
dictive of response to chemotherapy [71]. In metastatic
breast cancer, the change in the number of CTCs was highly
correlated with results from imaging before and after thera-
py. Based on these findings, CTCs were proposed as a
biomarker that may predict the effect of treatment earlier
than imaging modalities [72]. The differential prognostic
and overall survival showed between patients with and
without elevated CTCs before and, at the end of chemother-
apy, is of special interest in patients without clinical evi-
dence of metastasis [73].

For breast cancer patients, treatment decisions based on
the molecular profile of the primary tumor have been used
for many years. In HER2-overexpressing tumors, trastuzu-
mab is a key component of therapy. According to the
GeparQuattro trial, aimed at detecting and characterizing
CTCs before and after neoadjuvant therapy in the peripheral
blood of patients with breast cancer, information on the
HER2 status of CTC might be helpful for stratification and
monitoring of HER2-directed therapies [33].

This rationale is strengthened by a very recent study
conducted in women with early stage HER2-negative breast
cancer who were at high risk of relapse because they had
detectable CK19mRNA-positive CTCs. Georgoulias et al.
demonstrated that in these patients, treatment with “second-
ary adjuvant” trastuzumab resulted in a significantly re-
duced probability of disease relapse and increased disease-
free interval compared to patients receiving only standard
treatment [74]. Moreover, monitoring of circulating epithe-
lial tumor cells (CETC) was used as a timely control of
trastuzumab therapy in patients with HER2/neu-positive
breast cancer. Pachmann et al. report that patients treated
with trastuzumab had a better relapse-free survival than
patients without trastuzumab treatment during the first 2–
4 years of follow-up. Decrease in numbers of CETC or no
change versus highly variable numbers or increase (fivefold
or more) allowed to discriminate highly significantly and
clearly between patients with a low or high risk of relapse.
An increase in CETC was accompanied by an increasing
portion of cells containing a very high number of HER2/neu
gene amplificate [75]. In metastatic breast cancer, Hayashi
et al. prospectively assessed the prognostic value of HER2
status in CTCs from patients with MBC who started a new
line of systemic therapy and showed that HER2 status in
CTCs may be a prognostic factor [76].

However, despite persistent expression of HER2, most
tumors eventually become resistant to trastuzumab. When
this happens, the patients benefit from a regime containing
lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor.
Liu et al. have recently reported on a patient affected by

chemo-refractory metastatic HER2-positive breast cancer
enrolled in a translational research program for the detection
and characterization of CTCs. Depletion of the EGFR-
positive CTC pool in the blood was associated with tumor
response, whereas disease progression was related to a re-
currence in CTCs, which were both EGFR and HER2 neg-
ative. Although a proof for the clinical significance of
EGFR-positive circulating tumor cells is currently lacking,
expression of EGFR may predict response to lapatinib-
based treatments as in the case presented [55]. Well-
powered prospective studies are necessary to determine the
potential role of HER2-targeted therapies for patients with
HER2-positive CTCs and HER2-negative primary tumors.

Molecular characterization of CTCs could also help to
identify novel targets for biological therapies aimed to pre-
vent metastatic relapse. In addition, understanding tumor
“dormancy” and identifying metastatic stem cells might
result in the development of new therapeutic concepts
[77]. The role of CTCs in treatment failure and disease
progression can be explained by their relation to biological
processes, including the EMT and “self seeding,” defined as
reinfiltration of the primary tumor or established metastasis by
more aggressive CTCs [78]. Interruption of the metastatic
cascade via the targeting of CTCs might be a promising
therapeutic strategy [79]. Molecular CTC analysis will pro-
vide insights into the selection of tumor cells and resistance
mechanisms in patients undergoing systemic therapies. This
information might support assessing individual prognosis,
stratifying patients at risk to systemic therapies, and monitor-
ing therapeutic efficacy [80, 81].

4 Conclusions—future prospects

The future of CTCs lies in the molecular characterization of
these cells. Molecular characterization of CTC is absolutely
necessary, simple enumeration is just not enough. Molecular
characterization of CTCs can provide valuable information
on the expression of cancer specific genes in these cells as
well as mutations of oncogenes, and tumor suppressor
genes, or epigenetic silencing of tumor suppressor genes
and metastasis suppressors as well as FISH-based detection
of numerical chromosomal aberrations. This will enable the
identification of novel therapeutics that will target micro-
metastatic spread and elucidate CTC connection to cancer
stem cells. CTC technologies that are complementary, like
advanced imaging and molecular characterization, should be
used in combination in order to have a complete view of the
malignant nature of these cells. Moreover, an agreement on
the standardization of protocols for isolation and detection
of CTCs as well as cross validation of findings between labs
and a universal internal and external quality control system
both for CTC detection and enumeration is nowadays

Cancer Metastasis Rev



absolutely necessary [82]. In the near future, application of
modern powerful technologies such as next generation se-
quencing and proteomics will enable the elucidation of
molecular pathways in CTCs and lead to the design of novel
molecular therapies targeting specifically these cells.
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