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Abstract

Micro RNAs (miRNAs) are a class of small, non-coding RNA species that play critical roles throughout cellular development
and regulation. miRNA expression patterns taken from various tissue types often point to the cellular lineage of an
individual tissue type, thereby being a more invariant hallmark of tissue type. Recent work has shown that these miRNA
expression patterns can be used to classify tumor cells, and that this classification can be more accurate than the
classification achieved by using messenger RNA gene expression patterns. One aspect of miRNA biogenesis that makes
them particularly attractive as a biomarker is the fact that they are maintained in a protected state in serum and plasma,
thus allowing the detection of miRNA expression patterns directly from serum. This study is focused on the evaluation of
miRNA expression patterns in human serum for five types of human cancer, prostate, colon, ovarian, breast and lung, using
a pan-human microRNA, high density microarray. This microarray platform enables the simultaneous analysis of all human
microRNAs by either fluorescent or electrochemical signals, and can be easily redesigned to include newly identified
miRNAs. We show that sufficient miRNAs are present in one milliliter of serum to detect miRNA expression patterns, without
the need for amplification techniques. In addition, we are able to use these expression patterns to correctly discriminate
between normal and cancer patient samples.
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Introduction

MicroRNAs (miRNA) are single-stranded RNA molecules of

about 21–23 nucleotides in length, which function in the

regulation of gene expression. miRNAs are expressed as part of

primary transcripts in the form of hairpins with signals for dsRNA-

specific nuclease cleavage by the ribonuclease Drosha in

combination with an RNA-binding protein. After the precursor

miRNA is released as an approximately 70 nt RNA, it is

transported from the nucleus to the cytoplasm by Exportin-5,

and then is cleaved by Dicer RNase III to form a double-stranded

RNA. Dicer initiates the formation of the RNA-induced silencing

complex (RISC), which is responsible for the gene silencing

observed due to miRNA expression and RNA interference [1,2,3].

MicroRNAs have been found in tissues and also in serum and

plasma, and other body fluids, in a stable form that is protected

from endogenous RNase activity (in association with RISC, either

free in blood or in exosomes (endosome-derived organelles)).

Studies by Lu et al [4] demonstrated the feasibility and utility of

monitoring the expression of miRNAs in human cancer tissue.

They found a high level of diversity in miRNA expression across

cancers, and found that approximately 200 miRNAs could be

sufficient to classify human cancers. Tam [5] adds that because

miRNAs function as managers in gene regulatory networks, they

are distinct from other biomarkers because they have a pathogenic

role in the disease process and are not by-products of the disease

state. Because miRNAs function by specific binding to their

targets, polymorphisms (SNP) within the sequence of miRNAs or

their target mRNAs can lead to disease, including cancer. These

miRNA-specific SNPs can influence the risk of disease and can

also be used in the diagnosis of these diseases [6]. Deregulated

miRNAs have been described from numerous human cancers

including breast, lung, colon, ovarian, and prostate cancer.

Mitchell et al [7] found that miRNAs originating from prostate

cancer tissue enter circulation and can be used to distinguish

patients with prostate cancer from healthy controls and established

a blood-based PCR approach for the detection of human prostate

cancer. A similar approach was used to detect serum miRNA from

ovarian cancer patients [8]. Taylor and Gercel-Taylor [9]

investigated the use of circulating exosomes in the diagnosis of

cancer. They found that the miRNA content of ovarian tumor

cells and circulating exosome was similar and could be used to

distinguish cancer patients from patients with benign ovarian

disease and from normal controls.

miRNA signatures from normal and cancerous tissues have

been used to classify several types of cancer and may also allow

clinicians to determine a treatment course based on the original

tissue type. It may also be possible to use miRNA expression

patterns as a biomarker to monitor the effect of therapy on cancer

progression [2]. Because miRNA expression profiles parallel the
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developmental origins of tissues, and because relatively few

miRNAs can be used to effectively type tissues, they are potentially

superior markers than messenger RNAs for cancer diagnosis [4].

The potential for the use of serum miRNAs as biomarkers of

disease and as targets of therapeutics is promising [10], since it

would mean a non-invasive, accurate test for cancer. In this study,

we demonstrate that serum miRNAs can be used to discriminate

between cancer patient sera and normal donor sera, using a simple

microarray assay that requires no amplification step.

Results

Serum microRNA extraction
We have determined that a sufficient quantity of miRNAs is

present in less than 1 ml of human serum to produce a detectable

signal on a microarray using fluorescence or electrochemical

detection (ECD). Using a simple phenol/chloroform extraction

protocol, we recovered approximately 1.3 mg of serum RNA from

each 800 ml of serum (average of 18 samples; standard deviation

0.3). The resulting pattern of miRNA expression could be used to

distinguish between cancer patients and normal donors.

The approximate size of the small RNAs recovered from plasma

was determined by isolating large RNA fragments (low ethanol

concentration) and small RNA fragments (high ethanol concen-

tration) using the Invitrogen PureLink miRNA isolation kit, after

acid phenol/chloroform extraction and precipitation. The two

RNA size fractionations were labeled with biotin (Mirus) and

hybridized to a microarray. Results (not shown) indicated that the

vast majority of signal was from the small RNA fraction, which

was similar to the signal from the un-fractionated sample.

DNA contamination of extracted serum nucleic acid was

examined by comparison of an extracted sample that was split,

and half treated with DNase I. After labeling both treated and

untreated samples with biotin and hybridizing to different sectors

of the same 462K array, very little difference could be seen

between treated and untreated samples (r2 = 0.9 and 0.96

respectively for two replicates) indicating that little DNA

contaminates samples (data not shown).

Assay sensitivity and stability
The sensitivity of our miRNA assay was determined by adding

dilutions of a synthetic RNA oligonucleotide to our assay during

serum extraction. We were able to detect approximately 4,000

copies of serum microRNAs per microliter of serum (Figure 1).

This detection level is similar to that reported in Mitchell et al [7]

for the prostate cancer specific microRNA miR-141 using

TaqMan assays. miRNA microarrays are relatively more sensitive

than standard expression microarrays because small oligonucleo-

tides tend to have better hybridization kinetics than larger RNA or

DNA molecules. For miRNAs, both their protection from

digestion by various cellular factors, and their small size contribute

to their detection in serum by microarrays at levels that are as low

as those seen with methods that would otherwise be considered

more sensitive.

We have also determined that data collected from the same

serum samples after being frozen at 280uC for 1 week after the

Figure 1. Assay sensitivity. RNA miRNA analog oligonucleotides, at concentrations ranging from 0 to 40 million copies per microliter, were spiked
into 400 ul of serum after the addition of RLT buffer. RNA was then extracted from the serum using phenol/chloroform extractions and an ethanol
precipitation. Samples were then labeled and hybridized on a microarray. Vertical bars indicate array signal intensities for specific miRNA probes
representing the wild type sequence (Wild) and probes with two internal mutations (mut) for (A) oar|miR-431 and (B) oar|miR-127. Scales for the 4,000
and 0 copies data points (boxed in left panels) are expanded in the right panels: (C) oar|miR-431, and (D) oar|miR-127.
doi:10.1371/journal.pone.0006229.g001
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initial microRNA assays, was similar to the original data.

MicroRNAs from aliquots of 2 serum samples from cancer

patients (1 prostate and 1 colon) were extracted, labeled and

hybridized to arrays, and after one freeze/thaw event, new

aliquots were again extracted, labeled and hybridized to a second

array. Data sets, from re-assayed prostate cancer sample 811 and

colon sample 792, showed strong correlations when raw array data

were compared (r2 = 0.94 and 0.96 respectively). This result

indicates that the assay is reproducible and stable over time.

Serum microRNA data analysis
Several prostate, ovarian, colon, breast and lung cancer serum

samples as well as normal male and female donor sera have been

analyzed on the pan-miRNA microarray to ascertain serum

miRNA profiles and to confirm the specificity of the profiles for

different cancers and normal donors. Several data analysis

methods have been tested to determine the most relevant method

for the discrimination of cancer versus normal. For preliminary

analysis, we log2-transformed serum miRNA probe signals from a

normal donor and compared this data to log2-transformed probe

data from a prostate cancer patient and from a prostate cancer cell

line. Although both the prostate cancer serum sample and the

prostate cancer cell line (22Rv1) sample showed up-regulation

compared to a normal serum sample, they did not show much

similarity to each other. At this point, we simply note a relative up-

regulation of serum miRNAs in cancer as compared to serum from

normal donors (Figure 2).

We first set out to define a minimal set of probes that would

allow us to discriminate between prostate and normal serum

samples. Signal from each miRNA probe was first background

corrected using negative control probes. Subsequently, each

miRNA probe was expressed as the natural log of the ratio

between itself and the same probe in a normal human male serum

sample. This gives a value of 0 for all the base serum sample

probes and an up or down regulation with respect to that sample

(normal) for all the other samples (normal and cancer). Figure 3

shows the ratios of a subset of probes that passed multiple criteria.

All prostate cancer probe data sets were filtered to remove all

probes whose perfect match signal was not greater than its mutant

signal. Fifteen miRNAs were found to be over-expressed in serum

from all stage 3 and 4 prostate cancer patients (miR-16, -92a, -103,

-107, -197, -34b, -328, -485-3p, -486-5p, -92b, -574-3p, -636, -

640, -766, -885-5p) with respect to 8 normal controls (Figure 3).

This analysis also showed a slightly elevated signal for miR-141 in

stage 3 and 4 prostate cancer patient sera (mean = 829,

STD = 201) over normal donor sera (mean = 555, STD = 64);

which is in agreement with data reported by Mitchell et al [7]

using RT-PCR.

In Figure 4, we have plotted z-score-corrected signal intensities

for three hybridizations. Z-score normalization was computed by

subtracting the signal at each probe by the mean of the test probes

from the entire hybridization, and then, by dividing that value by

the standard deviation of the signal across test probes, across each

hybridization. This normalization yields probe signals that are

centered and normalized to a mean of 0 and a standard deviation

of 1.0. For each plot, signal was sorted from highest to lowest

intensity, and plotted as a solid line. Perfect match/mismatch

(pm/mm) ratios were plotted as open triangles over the signal

intensity line. Clearly, probes with higher intensities have

significantly higher pm/mm ratios. For signal from a miRNA to

be considered significant, its perfect match (wild-type anti-sense)

probe signal must be greater than that of its double mutant

negative control (mm) probe. Specifically, the pm/mm ratio must

be greater than 1.5 (plotted on the right-hand side y-axis). By this

metric, at least 34 probes were considered significant for the

normal serum sample (Figure 4A). For the prostate cancer cell line

22Rv1 sample and prostate cancer serum sample (Figure 4 B and

C), there were 57 and 62 significant probes respectively. At the

simplest level, the fact that most of the probes that have high signal

also have high pm/mm ratios, indicates that the signals we are

reading are real. We also performed several non-miRNA negative

control hybridizations. For these hybridizations, although some

Figure 2. Up-regulation of cancer sera miRNAs over normal donor sera miRNAs. Log transformed normal donor serum miRNA signals (blue
line) were compared to miRNA array signals from a prostate cancer cell line 22Rv (open squares) and from a prostate cancer patient (closed
diamonds). In general, cancer and cell line miRNAs seem to be up-regulated when compared to normal donor serum miRNAs.
doi:10.1371/journal.pone.0006229.g002
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probes have a higher signal than others, this is not accompanied by

a corresponding increase in the pm/mm ratios (not shown).

Hierarchical clustering. Hierarchical clustering was used to

group samples from different disease and normal states (Figure 5).

The dataset used for clustering contained 35 serum samples that

were a mixture of normal serum and cancer serum samples of

diverse types and severity (stages) (see Tables 1 and 2). Since most

of the miRNAs used on the microarray are not present at

detectable levels in most serum samples, clustering was only

performed on a subset of the miRNAs. This subset was drawn

from the group of miRNAs that were judged to be significant.

Only signal from miRNA probe sets that were found to have been

significant in at least 5 hybridizations across the entire data set

were taken and used for further analysis. Signal from test probes

(wild-type anti-sense) was log2-transformed. These probes were

then normalized by conversion to Z-score. Only test probes, not

any of the negative controls or spike-ins, were used for this

calculation. Signal was then thresholded based on significance.

Hierarchical clustering was performed using a program written in-

house that uses the spearman rank correlation as the distance

function. The output for this program is a dendrogram that was

displayed using the program Treeview [11]. Clustering indicates a

clear demarcation between normal and most cancer samples

(Figure 5).

Heat Map Analysis. To further explore the miRNAs

responsible for the clustering, Heat maps were used to look for

similarities between miRNA expression patterns within each

sample. This method is most effective when rows and columns

are ordered to allow these patterns to be easily identified.

Clustering was thus used to give this ordering (by identifying

miRNAs that have similar expression patterns, and arranging

them in close proximity). This data was ported to the open source

program, Cluster [12]. The raw data for both sample and miRNA

signal were median centered and then clustered using average

linkage, spearman rank coefficient as a distance function.

Heatmaps were displayed using Treeview [11]. This method

resulted in a clear ordering of the samples taken from our test-set

(Figure 6). Samples were labeled with a unique identifier. Serum

samples from patients with colon, prostate, ovarian, breast and

lung cancer in various stages of disease and treatment were used in

this dataset. This analysis resulted in two main branches: one

major cluster of sequences containing most of the cancer samples,

and a second branch containing the normal group along with a

second cancer group (Figure 6).

Decision Tree Analysis. For each miRNA mature region,

two controls were written on the chip: a sense wild-type probe (s),

an anti-sense wild-type (PM) form and a double mutant control

(MM). This probe set was used to evaluate significance as well as

intensity of each miRNA mature form. For each hybridization, the

raw signal was extracted and probes were grouped by the miRNA

that they were designed for. PM signal was log2 transformed, and

Z-normalized. For the classifier and for the focused cancer versus

normal hierarchical clustering, we used a simple heuristic to

determine if a probe was indeed present. For each miRNA that

was evaluated, we counted a signal significant if the signal for PM/

MM .1.0. If so, then the Z-normalized log2 (signal) was used for

that miRNA, otherwise the probe data for that particular probe

was not used. Normalization was thus performed over anti-sense

wild-type probes across the chip; however, only data from

significant probes were used for clustering and classification.

Data Mining was performed using the WEKA package [13].

Normalized probe intensity data was converted into ARFF format

and input into the WEKA program. Hybridizations were grouped

into two classes, ‘cancer’ and ‘normal’. We used the CfsSubsetEval

routine to choose miRNA’s (attributes). This method gave the best

classification of the data into the two classes. This routine assesses

the predictive ability of each attribute as well as the degree of

redundancy among each miRNA. It prefers attributes that are

highly correlated within each class, but that have low inter-

correlation. The choice of attributes was performed using 10-fold

cross-validation, and selection of the 28 best attributes was based

upon their being selected at least 30% of the time.

We next extracted signal from each hybridization for just this

selected set of miRNA’s. In Figure 7A, two different classifiers

Figure 3. Analysis of microRNA data for normal and prostate cancer sera. After data set normalization, the natural log of the ratio of the
signal for a specific probe over the same probe from the normal serum sample was taken. 15 miRNAs showed up-regulation in all stage 3 and 4
prostate cancer samples when compared to sera from normal male donors. These miRNAs are listed below each data set. Five stage 3 and 4 prostate
cancer sera (Yellow), and 8 normal male donor sera (red) were analyzed. Vertical lines indicate plus or minus one standard deviation of the mean.
doi:10.1371/journal.pone.0006229.g003
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were used to distinguish cancer vs. normal samples. A Bayesian

network and an instance-based method called K* [14] were able to

clearly differentiate the two classes within 36 samples. Clustering

was next performed using the Cluster program from Eisen et al.

[12]. Average linkage was used as the tree-building criteria and

Spearman rank correlation was used as the distance function.

Figure 7 B shows a much-improved separation of normal vs.

cancer patient samples.

Analysis of coded samples. miRNA microarray data from

cancer patients and normal donor sera were coded to remove any

indication of disease status and submitted for analysis. Using the

subset of attributes described above and in Figure 7, 16 single-

blinded samples were added to the dataset and analyzed with the

classifier. The k-star classifier was able to call 16/16 samples

correctly as either from cancer patients or normal donors, while

the Bayes Network classifier produced 3 misclassifications out of

16 (data not shown).

Discussion

miRNA expression signatures have a potential role in the

diagnosis, prognosis and therapy of human diseases, including

cancer, heart disease, viral infections and inflammatory diseases

[1–4,10,15–25]. Deregulation of miRNAs in cancer can be caused

by chromosomal deletions, amplifications and translocations; by

hypermethylation of CpG islands; and by regulation of transcrip-

tion and post-transcriptional processing [1,2,23]. Aberrant expres-

sion of miRNAs can influence cancer progression by affecting the

expression of oncogenes or tumor suppressors, and miRNAs, such

as the miR-17-92 cluster, can function directly as oncogenes

[1,2,23]. miRNAs are also involved in cancer through their effect

on the cell cycle, apoptosis, metastasis, and angiogenesis [1,2,23].

Several studies have detailed the miRNAs that are associated

with cancers [15,23,26–32]. Most of these studies have used biopsy

samples, archival tissues or cancer cells [5,33–37]; or have used

miRNAs extracted from paraffin embedded or formalin fixed

tissues [38]. By comparing non-cancerous tissues surrounding

cancerous tissues, or normal donors versus cancer patients, those

miRNAs that are up or down regulated can be identified, often

after PCR amplification. Many studies have been published

describing the specificity of miRNAs for different types of cancers,

cancer stages and cancer treatments and several reviews have been

published that summarize the most recent information on the roles

of miRNAs in cancer [1,2,5,6,15,23,25,32]. These studies

demonstrate the utility of miRNAs in both diagnosis and prognosis

of several cancers and also differentiate between cancer and

benign disorders [34]. While numerous studies have led to an

understanding of miRNAs at a tissue or cell level, there is a paucity

of data in serum studies hampering their use in routine diagnosis.

Recently a series of studies has been performed on miRNAs

present in serum [7–9,39–41]. In a recent report, miRNAs were

shown to be significantly elevated in pregnant versus non-

pregnant women [40]; and in another study, placental miRNAs

were shown to be present in maternal plasma [42]. In these

studies, the miRNAs were found to be very stable to storage, and

also to any RNAse degradation. miRNAs have recently been

shown by Mitchell et al [7] to circulate in serum of prostate cancer

patients [7]. In particular, miR-141 could differentiate prostate

cancer patients from normal individuals [7]. In a work by Taylor

and Gercel-Taylor [9], circulating tumor exosomes were isolated

from serum of ovarian cancer patients using magnetic beads and

an antiEpCAM antibody. miRNAs were then extracted, labeled

and detected by microarray. This approach, using larger volumes

of serum, indicated that eight diagnostic miRNAs were up-

regulated in cancer exosomes: miR-21, miR-141, miR-200a, miR-

200c, miR-200b, miR-203, miR-205, and miR-214. To date

however, no routine assay is available for examining miRNA

signatures in serum or in the plasma of cancer patients.

One issue that appears in these studies is the fact that the

miRNA expression patterns seen in serum are not identical to

those seen from miRNAs taken directly from cancer cell lines. In

our study, we found that although both the prostate cancer serum

sample and the prostate cancer cell line (22Rv1) sample showed

up-regulation compared to normal serum sample, they did not

show much similarity to each other. This seeming discrepancy

could be taking place for a number of reasons. The most obvious

of which is the possibility that samples taken from the cell lines

themselves are not representative of what appears in the serum.

We can speculate that the most obvious source of miRNAs that

appear in the serum is a product of tumor cell lysis; however, it

may also be possible that their appearance in the serum is the

product of a form of active transport involving the formation of

Figure 4. Analysis of signal from perfect match (wild type) and
miss-match (double mutant) miRNA probes (pm/mm ratio). (A)
Analysis of signal from normal serum; (B) Analysis of signal from 22Rv1
cell culture; and (C) signal from prostate cancer patient serum. Z-scores
(blue lines) were determined by subtracting the signal at each probe by
the mean of the test probes from the entire hybridization, and then, by
dividing the resulting value by the standard deviation of the signal
across test probes, across the entire hybridization.
doi:10.1371/journal.pone.0006229.g004
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Figure 5. Hierarchical clustering of microarray data (Spearman). Cancer samples and normal donor samples (brackets) were clustered using a
hierarchical clustering program to show sample-to-sample relationships. Sample labels include donor condition (cancer type or normal), sample lot
number (last three digits), gender, and cancer stage (2 – 4, or 0 for normal). Labels marked with a or b indicate repeat testing of the same sample.
doi:10.1371/journal.pone.0006229.g005

Table 1. Summary of human cancer serum samples tested in this study.

CANCER PATIENT SERUM SAMPLES

LOT NUMBER GENDER AGE STAGE CANCER TYPE TREATMENT

BRH233781 Female 63 4 OVARIAN CANCER Carboplatin, Taxotere

BRH233782 Female 66 4 OVARIAN CANCER Carboplatin, Gemzar

BRH233787 Female 69 4 NON-SMALL CELL LUNG Zofr, Deca, Carb, Neul, Veps

BRH234151 Female 68 4 SMALL CELL LUNG Topotecan

BRH234153 Male 62 3 SMALL CELL LUNG Zometa

BRH237121 Female 69 1 COLON CANCER None

BRH237122 Female 67 2 COLON CANCER Ferrlecit

BRH237123 Female 85 2 COLON CANCER None

BRH233792 Female 63 2 COLON CANCER None

BRH237120 Female 87 3 COLON CANCER Zometa

BRH233796 Male 69 3 COLON CANCER 5FU

BRH233798 Female 76 3 COLON CANCER None, Pretreatment

BRH249639 Male 47 4 COLON CANCER 5FU

BRH234157 Female 80 4 BREAST CANCER Femara, Zometa

BRH234158 Female 44 4 BREAST CANCER Xeloda, Zometa

BRH233808 Male 65 4 PROSTATE Taxotere, Zometa

BRH233809 Male 62 4 PROSTATE Taxotere, Zometa

BRH233811 Male 72 3 PROSTATE Lupron, Zometa

BRH233812 Male 61 3 PROSTATE None

BRH233814 Male 59 3 PROSTATE Taxotere

BRH249616 Male 64 2 PROSTATE None

doi:10.1371/journal.pone.0006229.t001
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exosomes (36). This would confound a direct comparison between

miRNA expression patters derived from cell-line and tumor with

those that are serum-derived.

Information on the use of miRNAs as biomarkers is predom-

inantly associated with studies on tissue samples or cancer cell

lines. Distinct patterns of miRNA expression are able to

distinguish between cell type and stage in various cancers. This

bodes well for diagnostic and prognostic applications of miRNA

profiles. It also indicates there is clearly a need to define the

expression profiles of miRNAs in serum of cancer patients and

compare these to profiles observed in the serum of individuals

representing a range of diseased and healthy states. It is

anticipated that miRNA profiles in serum have the potential to

be early markers for cancer detection and will also play a role in

the monitoring of disease status during chemotherapy.

In this study, we have determined that a sufficient quantity of

miRNAs is present in one ml of human serum to produce a

detectable signal on a microarray using fluorescence or electro-

chemical detection. At the simplest level, this study has shown that

serum miRNAs are up-regulated in cancer patients as compared

to normal donors. In a comparison of stages 3 and 4 prostate

cancer sera and normal donor serum miRNA levels, we found that

15 miRNAs (miR-16, -92a, -103, -107, -197, -34b, -328, -485-3p, -

486-5p, -92b, -574-3p, -636, -640, -766, -885-5p) were up-

regulated in serum from prostate cancer patients compared to

normal donor sera.

Heat Map and cluster analyses show that serum miRNA

signatures can also be used to separate cancer patients and normal

donors in most cases. Sixty-five miRNAs (see Figure 6) were used

in a Heat Map analysis that isolated 21 cancer samples, plus 3 re-

assayed samples, from normal samples. Sixteen cancer samples

clustered together, while five cancer samples formed a separate

cluster within the normal sample cluster. Cluster analysis (see

Figure 5) was also used to distinguish 21 cancer samples from 12

normal samples. Three cancer samples that were re-analyzed after

freeze-thawing and storage, also clustered with the cancer samples

We have also shown that serum miRNAs can be detected at a

level similar to that reported for TaqMan PCR from serum,

approximately 4,000 copies per ul [7], and that the assay is stable

for repeated sample testing after storage. The relative sensitivity of

miRNA microarrays over standard expression arrays could be due

to the hybridization kinetics of small oligonucleotides. Small

molecules tend to have better hybridization kinetics than larger

RNA or DNA molecules. Indeed, most of the thermodynamic

models for predicting DNA hybridization behavior were devel-

oped using short oligonucleotides [43]. Many of the conclusions

drawn from such studies do not apply when larger molecules are

used as secondary structure, non-specific binding, and various

other unforeseeable effects interfere with predicted hybridization

behavior. For miRNAs, both their protection from digestion by

various cellular factors, and their small size contribute to their

detection in serum by microarrays at levels that are as low as those

seen with methods that would otherwise be considered more

sensitive, such as RT-PCR. The sensitivity of the microarray

platform used here has allowed us to monitor miRNA from a small

volume of serum and to classify sera as either from normal donors

or from cancer patients.

Our results, in general, agree in many cases with previously

published studies. However, differences in our results from other

studies could result from several factors: 1) Serum miRNA expression

profiles do not directly correspond to tissue profiles. The low levels of

miRNAs in serum are better suited to studies of up-regulation and not

down-regulation. In addition, it is unlikely that there is a direct

correspondence between tissue miRNA levels and serum miRNA

levels due to the possible mechanisms of miRNA release into

circulation (cell lysis or exosome release [9]) [8], and to the release of

miRNAs into circulation from other tissues as a result of the cancer or

other related or non-cancer related conditions; 2) Different miRNA

labeling techniques can produce different expression profiles. For

example, ULS chemical labeling (Mirus and Kreatech kits), which

only targets G residues, produces signal intensities that are directly

proportional to the number of G residues in the miRNA. In contrast,

labeling by incorporating modified nucleotides or label into an

extended poly A tail, or by labeling with a modified primer by first

strand cDNA synthesis, should produce a more even label; 3) We

found that amplification techniques such as RT-PCR or T7 promoter

expression, produce different expression patterns on arrays when

compared to un-amplified samples. This could be due to differential

efficiency in the amplification process. In addition, the limited

quantity of miRNAs in human serum is not sufficient for column

purification, which is commonly used for tissue miRNA purification.

An example of published data from two different miRNA

expression profiling techniques that do not show strong agreement

is illustrated in the following comparison. Schetter et al [44]

labeled colon cancer tissue miRNAs by reverse transcriptase

extension with a labeled primer and hybridized the target to a

microarray, while Monzo et al [45] determined colon cancer tissue

miRNA expression levels by TaqMan RT-PCR. When the 26 up-

regulated miRNAs from the Schetter study are compared to those

from the Monzo study, only 14 miRNAs are in agreement (54%).

In a similar comparison of up-regulated prostate cancer tissue

miRNAs from studies by Tong et al (TaqMan data [46]), Porkka et

al (array data [47]), and Ambs et al (array and TaqMan data [33]),

very little overlap of miRNA expression data can be seen: little or

no overlap in data between Tong et al and Porkka et al, and only 1

of 33 and 1 of 34 miRNAs were in agreement for Tong et al

compared to Ambs et al, and for Porkka et al compared to Ambs

et al, respectively. Of the 15 upregulated serum miRNAs we report

for prostate cancer, 4 are in agreement with data from Ambs et al,

and 2 are in agreement with data from Porkka et al.

Table 2. Summary of normal donor serum samples tested in
this study.

NORMAL DONORS

LOT NUMBER GENDER AGE

BRH233823 Male 40

BRH233824 Male 61

BRH233825 Male 44

BRH233826 Male 42

BRH233827 Male 49

BRH233828 Male 50

BRH233829 Male 41

BRH237135 Male 31

BRH237124 Female 56

BRH237125 Female 22

BRH237126 Female 22

BRH237127 Female 69

BRH237131 Female 48

BRH237132 Female 47

BRH237133 Female 32

doi:10.1371/journal.pone.0006229.t002
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Figure 6. Heat maps of microRNA array data. The set of miRNAs used for analysis was chosen based on significance in at least 5 hybridizations.
A probe-set was judged significant if the ratio of perfect-match (PM)/mismatch (MM) probes was greater than 1.5.For each hybridization in the
analysis, only significant signal was used for the clustering. Signal for those miRNAs whose signal was judged significant by PM/MM ratios was Log 2
converted. Then the signal was median normalized over that hybridization and Average Linkage Clustering was performed using a Spearman Rank
Correlation. Clustering was visualized using the program TreeView [12]. Green indicates negative values and Red indicates positive values. Samples
are identified as either normal (blue bar) or cancer (yellow bar) at the top of the figure. miRNA names are listed to the right and sample identifications
are listed above.
doi:10.1371/journal.pone.0006229.g006
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Figure 7. Cancer vs. Normal Classifier. Data Mining was performed using the WEKA package [13]. miRNA probes (attributes) were chosen using
an attribute selection routine called CfsSubsteEval. (A) 28 miRNAs were found using this method. Two distinct classifier methods, both the Bayes
network implementation and K* methods [14] were able to correctly classify these samples (using 10-fold cross-validation). The results for both
classifier runs are displayed as a confusion matrix on the right. (B) Hierarchical clustering of normal and cancer samples was performed using signal
from these 28 miRNAs. Red blocks are highly expressed, green are considered down-regulated and black blocks are non-significant as judged by PM/
MM criteria described in the text. Samples are identified as either normal (blue bar) or cancer (yellow bar) at the top of the figure. miRNA names are
listed to the right and sample identifications are listed above.
doi:10.1371/journal.pone.0006229.g007
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This study must be confirmed with a larger and better-

documented data set. We do not yet know the affects of gender,

age and cancer treatment on miRNA levels in serum. Radiation

and chemotherapies that result in remission of cancer should also

result in a change in the serum miRNA profiles. Wong, et al. [48]

have shown that plasma levels of miR-184 were elevated in

patients with squamous cell carcinoma of the tongue, and that

plasma miRNA levels were reduced after surgical removal of the

tumor. This would indicate that cancer treatment does have an

affect on the levels of cancer-specific miRNAs in circulation. The

samples used in this study were from cancer patients that were

treated by chemotherapy in most cases. Because we do not have

detailed information on the results of treatment on cancer

progression or remission we cannot include this variable in our

analysis. Additional studies with well-documented patient samples

will be needed to address this question.

Materials and Methods

DNA array synthesis and microarray configuration
Arrays for serum miRNA analysis were constructed with 547

human miRNA sequences obtained from the Sanger Database

version 10.0 which appeared on 8/2/07. Because of limited space

on the array, the probe list was modified to exclude a few newer

miRNAs that had recently been added. The array includes

miRNA probes for all studies referenced by this paper. Three

probes were written for each miRNA: an anti-sensed wild-type

version, a double-mutant control probe, and a sense control

version (Figure 8). Antisense controls were not included if the

corresponding antisense miRNA existed in the databases. The

double mutant control mutations were screened in order to

maintain the same notional melting temperature (Tm) as the wild-

type Tm. They were also designed to avoid perturbing or creating

any secondary structure that might appear in the wild-type probe.

In addition to the 547 human miRNAs, we also included as

controls, four sheep, three C. elegans, and two human sequences.

These arrays have been initially evaluated using a Cy5

fluorescence detection system, but can be converted to a more

sensitive electrochemical system (ECD: ElectraSenseH) [49].

Additional microRNAs can be easily added to the array as they

are identified in the Sanger database.

22Rv1 cell culture
22Rv1 human prostate cancer-derived cells were cultured in

standard plastic tissue culture plates in RPMI medium 1640

(GIBCO) supplemented with 10% FBS and 1% penicillin-

streptomycin at 37uC in a 5% CO2 incubator. Cells were

harvested in Qiagen RLT buffer and extracted with phenol/

chloroform as described below.

Human serum samples
Human serum samples were purchased from Bioreclamation,

Inc, Hicksville, NY and include: stages 2 to 4 prostate, stages 1 to 4

colon, stage 4 ovarian, stage 4 breast, and stages 3 and 4 lung cancer

sera (Table 1); and sera from normal male and female donors

(Table 2). All cancer samples have associated patient data including

age, race, gender, chemotherapy, and stage of disease. No

information on treatment outcome or on radiation therapy was

supplied with samples. Samples were stored at minus 80uC until use.

MicroRNA extraction, labeling and hybridization
Extraction. An aliquot of 400 ml of each serum sample was

mixed with 500 ml lysis buffer (RLT, Qiagen, Valencia, CA) and

800 ml acid phenol: Chloroform (Ambion, Foster City, CA),

vortexed for 30 seconds and centrifuged at 16000 rcf for 10 min at

25uC. The aqueous phase was extracted 26with an equal volume

of acid phenol:chloroform and centrifuged at 16000 rcf for 10 min

at 25uC. The resulting aqueous phase was then precipitated with

0.1 vol 5 M NaCl, 2 ml precipitation enhancer (Mirus, Madison,

WI), 2 ml GlycoBlue (Ambion) and 2.5 vol 100% ethanol at

220uC for at least 1 hr. After centrifugation at 4uC for 30 min,

the pellets were washed 26with 75% ethanol and then air-dried.

Precipitated RNA was resuspended in 50 ml molecular grade water

(Ambion) and quantified with a NanoDrop ND-1000

spectrophotometer (Thermo Scientific, Wilmington, DE).

Labeling. Approximately one mg of isolated RNA was labeled

with a Mirus miRNA Biotin labeling kit (MIR8450) following

manufacturers directions. Briefly, 1 mg RNA was diluted to 86 ml

with water and 10 ml of 106 buffer was added followed by 4 ml

LabelIT biotin labeling reagent and incubation at 37uC for 1 hr. The

reaction was stopped with 10 ml stop reagent and the sample

precipitated as described above. The dried pellet was resuspended in

5.1 ml water.

Hybridization. Sectored array chambers (4 chambers per

array) (CombiMatrix 462K arraysTM) were each filled with 30 ml

of Pre-Hybridization Solution (CombiMatrix Corp) and incubated

for 10 min at 45uC. MicroRNA was mixed with 9 ml 206 SSPE

(Ambion), 4.8 ml BSA at 50 mg/ml (Ambion), 3.6 ml deionized

formamide (Sigma) and 7.5 ml of 10% SDS (Ambion) and heated

to 95uC for 3 min. 30 ml of each sample were added to sectored

hybridization chambers, sealed with aluminum tape, and

incubated at 45uC for 16 hr with rotation. After hybridization,

arrays were washed 26 with 26 SSC with 0.1% SDS at room

temperature (RT) for 10 sec (CombiMatrix Corp), 26 with 26
SSC at RT for 10 sec and then washed 16with 0.26SSC at RT

for 10 sec each.

Arrays were blocked with 56 PBS/Casein Blocking Buffer at

RT for 10 min and then labeled with either Cy5 labeling solution

for fluorescence scanning or HRP Biotin Labeling Solution

Figure 8. Probe design scheme for miRNA array. Sequences for miRNA probes were taken from the Sanger database version 10.0 (released, 8/
2/2007). We generally used only the predominantly expressed form for each miRNA precursor. This was done to save space on the array. The final list
included all of the dominant miRNA forms from the studies referenced in this paper [4,8,18]. Three probes were designed for each mature miRNA
sequence: 1) antisense to wild type; 2) double mutated antisense (boxes); and 3) sense negative control probes (included if the corresponding
sequence was not found in miRNA databases). Hsa-let-7a is used here as an example of our approach to probe design.
doi:10.1371/journal.pone.0006229.g008
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(CombiMatrix) for ElectraSense reading (CombiMatrix) and

incubated for 30 min at RT. Arrays were then washed 26 with

Biotin Wash Solution (26 PBST) for 30 sec each at room temp

and again washed 26 with 26 PBS followed by scanning for

fluorescence, or washed 26 with TMB Rinse Solution (Combi-

Matrix), followed by one wash with TMB substrate (CombiMatrix)

and scanning with an ElectraSense reader (CombiMatrix) after

fresh TMB was added.

Determination of assay sensitivity
To determine the sensitivity of our assay, commercially

purchased RNA miRNA analog oligonucleotides (IDT), at

concentrations ranging from 0 to 40,000,000 copies per microliter,

were spiked into 400 ml of normal human serum after the addition

of RLT buffer. RNA was then extracted from the serum using acid

phenol/chloroform extractions and an ethanol precipitation.

Samples were then labeled with biotin and hybridized on a

microarray as previously described.

The approximate size of the small RNAs recovered from serum

was determined by isolating large RNA fragments (low ethanol

concentration) and small RNA fragments (high ethanol concen-

tration) using the Invitrogen PureLink miRNA isolation kit, after

phenol/chloroform extraction and precipitation. The two RNA

size fractionations were labeled with biotin (Mirus) and hybridized

to a microarray as described above.

DNA contamination of extracted serum nucleic acids
Purified nucleic acid from a serum sample was split into two

aliquots (DNase I-treated and untreated). One aliquot was digested

with DNase I (New England Biolabs, Ipswich, MA) for 30 min at

37uC, following manufacturer’s protocol, and then heated to 85uC
for 15 min. This sample was then precipitated with NaCl and

ethanol and both DNase I-treated and untreated samples were

labeled with a Mirus biotin-labeling kit as described above.

GEO Database
Array data accession numbers: GPL8686; GSE16512;

GSM414832 - GSM414867.
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