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Real-time PCR in the microbiology laboratory
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A B S T R A C T

Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as
the standard method for detecting nucleic acids from a number of sample and microbial types.
However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has
catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of
carryover contamination is minimised. There is an increasing number of chemistries which are used to
detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These
include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucle-
otide probes, some of which will be discussed in detail. It is not only the technology that has changed
with the introduction of real-time PCR. Accompanying changes have occurred in the traditional
terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the
development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and
genotyping of the microbial causes of infectious disease, will also be discussed. Because the
amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review
aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and
general background of real-time PCR technology will be reviewed in the context of the microbiology
laboratory.
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B A C K G R O U N D

Diagnostic microbiology is in the midst of a new
era. Rapid nucleic acid amplification and detec-
tion technologies are quickly displacing the tra-
ditional assays based on pathogen phenotype
rather than genotype. The polymerase chain
reaction (PCR) [1,2] has increasingly been des-
cribed as the latest gold standard for detecting
some microbes, but such claims can only be taken
seriously when each newly described assay is
suitably compared to its characterised predeces-
sors [3–6]. PCR is the most commonly used
nucleic acid amplification technique for the

diagnosis of infectious disease, surpassing the
probe and signal amplification methods. The PCR
can amplify DNA or, when preceded by a reverse
transcription (RT) incubation at 42–55 �C, RNA.
RT-PCR is the most sensitive method for the
detection and quantitation of mRNA, especially
for low-abundance templates [7–10]. The PCR
process can be divided into three steps. First,
double-stranded DNA (dsDNA) is separated at
temperatures above 90 �C. Second, oligonucleo-
tide primers generally anneal at 50–60 �C, and,
finally, optimal primer extension occurs at
70–78 �C. The temperature at which the primer
anneals is usually referred to as the TM. This is the
temperature at which 50% of the oligonucleotide–
target duplexes have formed. In the case of real-
time PCR, the oligonucleotide could represent a
primer or a labelled probe. The TM differs from the
denaturation temperature (TD), which refers to the
TM as it applies to the melting of dsDNA. The rate
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of temperature change or ramp rate, the length of
the incubation at each temperature and the num-
ber of times each cycle of temperatures is repeated
are controlled by a programmable thermal cycler.
Current technologies have significantly shortened
the ramp rates, and therefore assay time, through
the use of electronically controlled heating blocks
or fan-forced heated air flows.

The traditional diagnostic microbiological
assays include microscopy, microbial culture,
antigenaemia and serology. These can be limited
by poor sensitivity, slow-growing or poorly viable
organisms, narrow detection windows, complex
interpretation, immunosuppression, antimicrobial
therapy, high levels of background and non-
specific cross-reactions [11,12]. Nonetheless,
microbial culture produces valuable epidemio-
logical data, revealing new, uncharacterised or
atypical microbes and yielding intact or infectious
organisms for further study [13]. It is therefore
clear that the role of the traditional assay contin-
ues to be an important one [14–18]. Additionally,
PCR has some significant limitations. Our ability
to design oligonucleotide primers only extends to
our knowledge of a microorganism’s genome as
well as the ability of publicly available sequence
databases to suitably represent all variants of that
microbe. It is common for microbial genomes to
contain unexpected mutations, which reduce or
abrogate the function of a PCR. Traditionally,
false-positives due to carryover contamination
have caused considerable problems in the routine
implementation of PCR in the diagnostic laborat-
ory and have led to strict guidelines for the design
of laboratories dedicated to performing PCR.
Additionally, PCR may be too sensitive for some
applications, detecting a microbe that is present at
non-pathogenic levels. Thus, care is required
when designing a PCR assay and interpreting its
results.

Existing combinations of PCR and amplicon
detection assays will be called ‘conventional PCR’
throughout this review. The detection compo-
nents include agarose gel electrophoresis [19],
Southern blot [20] and ELISA-like systems [21].
Conventional PCR has been used to obtain quan-
titative data, with promising results [22]. How-
ever, these approaches have suffered from the
laborious post-PCR handling steps required to
evaluate the amplicon [23].

The possibility that, in contrast to conventional
PCR, the detection of amplicon could be visual-

ised as the amplification progressed was a
welcome one. This expanded the role of PCR
from that of a pure research tool to that of a
versatile technology permitting the development
of routine diagnostic applications for the high-
and low-throughput clinical microbiology labor-
atory [24,25]. Along the way, real-time assays
have provided insight into the kinetics of the PCR
as well as the efficiency of different nucleic acid
extraction methods and the role that some com-
pounds play in the inhibition of amplification
[20,26–33]. Real-time PCR has made many more
scientists familiar with the crucial factors contri-
buting to successful amplification of nucleic acids.
Today, real-time PCR is used to detect nucleic
acids from food, vectors used in gene therapy
protocols, genetically modified organisms, and
areas of human and veterinary microbiology and
oncology [34–36].

The monitoring of accumulating amplicon in
real time has been made possible by the labelling
of primers, oligonucleotide probes (oligoprobes)
or amplicons with molecules capable of fluores-
cing. These labels produce a change in signal
following direct interaction with, or hybridisation
to, the amplicon. The signal is related to the
amount of amplicon present during each cycle
and will increase as the amount of specific
amplicon increases. These chemistries have clear
benefits over earlier radiogenic labels, including
an absence of radioactive emissions, easy disposal
and an extended shelf-life [37].

A significant improvement introduced by real-
time PCR is the increased speed with which it can
produce results. This is largely due to the reduced
cycle times, removal of separate post-PCR detec-
tion procedures, and the use of sensitive fluores-
cence detection equipment, allowing earlier
amplicon detection [38,39]. A reduced amplicon
size may also play a role in this speed; however, it
has been shown that decreased product size does
not strictly correlate with improved PCR effi-
ciency, and that the distance between the primers
and the oligoprobe may play a more significant
role [40,41].

The technical disadvantages of using real-time
PCR instead of conventional PCR include the need
to break the seal of an otherwise closed system in
order to monitor amplicon size, the incompatibil-
ity of certain platforms with some fluorescent
chemistries, and the relatively restricted multiplex
capabilities of current systems. Additionally, the
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start-up expense of real-time PCR may be prohib-
itive for low-throughput laboratories.

Because most of the popular real-time PCR
chemistries involve hybridisation of an oligo-
probe(s) to a complementary sequence on one of
the amplicon strands, the inclusion of more of the
primer that creates that strand is beneficial to the
generation of an increased fluorescent signal [42].
We have found that this asymmetric PCR
approach improves the signal from both our
conventional and real-time oligoprobe-hybridisa-
tion assays.

Although some of the fluorescent labels have
been given an associated nomenclature by their
developer, the term ‘fluorophore’ will generally be
used to describe these moieties, while their inclu-
sion as labels on an oligonucleotide will be
described as rendering it ‘fluorogenic’. The most
commonly used fluorogenic oligoprobes rely
upon fluorescence resonance energy transfer
(FRET) between fluorogenic labels or between
one fluorophore and a dark or black-hole non-
fluorescent quencher (NFQ), which disperses
energy as heat rather than fluorescence [43]. FRET
is a spectroscopic process by which energy is
passed between molecules separated by 10–100 Å
that have overlapping emission and absorption
spectra [44–46]. Förster primarily developed the
theory behind this process, which is a non-radia-
tive induced dipole interaction [43,47,48].

As alluded to earlier, post-amplification mani-
pulation of the amplicon is not required for real-
time PCR, because the fluorescent signals are
directly measured as they pass out of the reaction
vessel, so real-time PCR is often described as a
‘closed’ or homogeneous system. Apart from the
time saved by amplifying and detecting template
in a single tube, there is minimal potential for
carryover contamination, and the assay’s per-
formance can be closely scrutinised without
introducing errors due to handling of the ampl-
icon [49]. In addition, real-time PCR has proven to
be cost-effective on a per-run basis, when imple-
mented in a high-throughput laboratory [50],
particularly when replacing conventional, cul-
ture-based approaches to microbial detection.

In the remainder of this review, the theory
behind real-time PCR will be discussed. Addi-
tionally, its rapidly expanding use in the study of
human infectious disease will provide an example
of its acceptance and effectiveness in the diagnos-
tic microbiology laboratory.

A M P L I C O N D E T E C T I O N

It is the detection process that discriminates real-
time PCR from conventional PCR assays. There is
a range of chemistries currently in use which can
be broadly categorised as specific or non-specific
for the amplicon’s sequence [51]. These have
recently been reviewed in detail [52]. Several
additional reporter systems have since been des-
cribed, and these will be discussed below; how-
ever, few applications have been described for the
specific detection and genotyping of microbes.

While the most common oligoprobes are based
on traditional nucleic acid chemistry, the peptide
nucleic acid (PNA) is becoming a more popular
choice for oligonucleotide backbones. The PNA is
a DNA analogue that is formed of neutral repea-
ted N-(2-aminoethyl) glycine units instead of
negatively charged sugar phosphates [53].
However, the PNA retains the same sequence
recognition properties as DNA.

In general, however, the specific and non-
specific fluorogenic chemistries detect amplicon
with the same sensitivity [39].

L I N E A R O L I G O P R O B E S

The use of a pair of adjacent, fluorogenic hybrid-
isation oligoprobes was first described in the late
1980s [45,54], and, now known as ‘HybProbes’,
they have become the manufacturer’s chemistry
of choice for the LightCycler (Roche Molecular
Biochemicals, Mannheim, Germany), a capillary-
based, microvolume fluorimeter and thermocy-
cler with rapid temperature control [39,55]. The
upstream oligoprobe is labeled with a 3¢ donor
fluorophore (fluorescein isothiocyanate, FITC),
and the downstream probe is commonly labelled
with either a LightCycler Red 640 or Red 705
acceptor fluorophore at the 5¢-terminus, so that
when both oligoprobes are hybridised, the two
fluorophores are located within 10 nucleotides of
each other.

Most recently described fluorogenic oligo-
probes fall into the linear class of oligoprobe.
The recently described double-stranded oligo-
probes function by displacement hybridisation
(Fig. 1a) [56]. In this process, a 5¢ fluorophore-
labelled oligonucleotide is, in its resting state,
hybridised with a complementary, but shorter,
quenching DNA strand that is 3¢ end-labeled with
an NFQ. When the full-length complementary
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Fig. 1. Oligoprobe chemistries. (a) Displacement probes. The shorter NFQ-labeled strand (Q; filled pentagon) is displaced
when the fluorophore-labelled (F; open circle) strand hybridises to the specific and longer amplicon. (b) Q-PNA primers.
Quenching is achieved in the absence of specific template by a short NFQ-labelled PNA molecule designed to hybridise
with the fluorophore-labelled primer. (c) Light-up probes. These PNA probes fluoresce in the presence of a hybridised
DNA strand due to their asymmetric thiazole orange fluorophore (T; open triangle). (d) HyBeacons. In close proximity to
DNA, as occurs upon hybridisation with the specific amplicon, the fluorophore emits fluorescence. (e) DzyNA primers.
When the primer is duplicated by the complementary strand (dashed line), a DNAzyme is created. In the presence of a
complementary, dual-labelled oligonucleotide substrate, the continuously amplified DNAzyme will specifically cleave the
template between the fluorophore and quencher (Q; open pentagon), releasing the labels and allowing fluorescence to
occur. (f) Tripartite molecular beacons. The fluorophore is removed from the NFQ’s influence upon opening of the hairpin
because of hybridisation to specific amplicon, permitting fluorescence.
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sequence in the form of an amplicon is present,
the reporter strand will preferentially hybridise to
the longer amplicon, disrupting the quenched
oligoprobe duplex and permitting the fluoro-
phore to emit its excitation energy directly.

This technique can also be used with a fluor-
ophore-labelled primer, and, due to the added
stringency of the complementary strand, the
system acts as its own ‘hot-start’, as was shown
using an NFQ-labeled PNA [57] strand (Q-PNA)
(Fig. 1b) [58]. In this system, the quenching probe
is bound to unincorporated fluorogenic primer
such that the NFQ and fluorophore are adjacent,
resulting in a quenched system. Once the dsDNA
amplicon is created by primer extension, how-
ever, the Q-PNA is displaced, and the fluorophore
can fluoresce. The PNA backbones cannot be
extended or hydrolysed by a DNA polymerase.

The light-up probe is also a PNA to which the
asymmetric cyanine fluorophore thiazole orange
is attached (Fig. 1c) [59]. When hybridised with a
nucleic acid target, as either a duplex or triplex,
the fluorophore becomes strongly fluorescent.
These oligoprobes do not interfere with the PCR
or require conformational change, they are sensi-
tive to single nucleotide mismatches and, because
a single reporter is used, they allow the direct
measurement of fluorescence instead of the meas-
urement of a change in fluorescence between two
fluorophores [59,60]. However, non-specific fluor-
escence has been reported during extended cyc-
ling [61].

The HyBeacon is a single linear oligonucleotide
internally labelled with a fluorophore that emits
an increased signal upon formation of a duplex
with the target DNA strand (Fig. 1d) [62,63]. The
HyBeacon is labelled at the 3¢-terminus with a
phosphate or octanediol molecule to prevent Taq-
mediated extension. This technique is used with
all the non-incorporating nucleotide-based oligo-
probe chemistries used in real-time PCR to ensure
that they do not function as a primer. This
chemistry does not require destruction, interac-
tion with a second oligoprobe or secondary
structure changes to produce a signal, and it is
relatively cheap and simple to design.

D U A L - L A B E L L E D O L I G O P R O B E S

In the early 1990s, an innovative approach
involved nick-translation PCR in combination
with dual-fluorophore-labelled oligoprobes was

introduced [26]. In the first truly homogeneous
assay of its kind, a fluorophore was added to the
5¢-terminus and another to the middle of a
sequence-specific oligoprobe. When in such close
proximity, the 5¢ reporter fluorophore (6-carboxy-
fluoroscein; FAM) transferred laser-induced
excitation energy by FRET to the 3¢ quencher
fluorophore (6-carboxy-tetramethyl-rhodamine;
TAMRA). The oligoprobe hybridised to its tem-
plate prior to the extension step, and the fluor-
ophores were subsequently released during the
primer extension step as a result of the 5¢ to 3¢
endonuclease activity of a suitable DNA polym-
erase. Once the labels were separated, the repor-
ter’s emissions were no longer quenched, and the
instrument monitored the resulting fluorescence.
Today, these oligoprobes are labelled at each
terminus and are called 5¢ nuclease, hydrolysis or
TaqMan oligoprobes. The nuclease oligoprobe is
the manufacturer’s chemistry of choice for the
ABI Prism sequence detection systems.

A modification of the 5¢ nuclease chemistry has
resulted in the minor groove binding (MGB)
oligoprobes [64]. This chemistry, commercially
called the Eclipse oligoprobes, replaces the Taq-
Man oligoprobe’s standard TAMRA quencher
with a proprietary NFQ and incorporates a
molecule that hyperstabilises the oligoprobe–tar-
get duplex by folding into the minor groove of the
dsDNA [65,66]. A fluorophore is attached to the
3¢ end, and in the unbound state the oligoprobe
assumes a random coil configuration that is
efficiently quenched. This chemistry allows the
use of very short (12–17-nucleotide) oligoprobes
because of a 15–30 �C rise in their TM resulting
from the interaction of the MGB with the DNA
helix. These short oligoprobes are ideal for detect-
ing single-nucleotide polymorphisms (SNPs),
because they are more significantly destabilised
by nucleotide changes within the hybridisation
site than are larger oligoprobes.

Another dual-labelled oligonucleotide sequ-
ence has been used as the signal-generating
portion of the DzyNA-PCR system (Fig. 1e) [67].
Here, the reporter and quencher molecules are
separated following specific cleavage of the oligo-
nucleotides holding them in close proximity. This
cleavage is performed by a DNAzyme, which is
created during the PCR as the complement of
an antisense DNAzyme sequence included in
the 5¢ tail of one of the primers. Upon clea-
vage, the fluorophores are released, allowing
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the production of fluorescence in an identical
manner to a hydrolysed TaqMan oligoprobe.

H A I R P I N O L I G O N U C L E O T I D E S

Molecular beacons were the first hairpin oligo-
probes to be used in real-time PCR. The molecular
beacon’s fluorogenic labels are positioned at the
termini of the oligoprobe. The labels are held in
close proximity by distal stem regions of homol-
ogous base pairing deliberately designed to create
a hairpin structure. The closed hairpin is
quenched due either to FRET or direct collision
transfer of energy occurring at the molecular level
as a consequence of the intimate proximity of the
labels [68]. In the presence of a complementary
sequence, designed to occur within the bounds of
the primer binding sites, the oligoprobe will
hybridise, shifting into an open configuration.
The fluorophore is now spatially removed from
the quencher’s influence, allowing fluorescent
emissions to be monitored [69]. This structural
change occurs in each cycle, increasing in cumu-
lative intensity as the amount of specific amplicon
increases. The quencher, DABCYL (4-(4¢-dimeth-
ylamino-phenylazo)-benzene), differs from that
described for the nuclease oligoprobes because it
is an NFQ.

Recently, tripartite molecular beacons have
been added to this class of fluorogenic chemistry
(Fig. 1f) [70]. These oligoprobes have been
designed to fulfill a need for suitably high-
throughput chemistries and they combine a
molecular beacon’s hairpin with long or unla-
belled single-stranded arms, each designed to
hybridise to an oligonucleotide labelled with
either a fluorophore or an NFQ. The system is
quenched in the hairpin state due to the close
proximity of the labels, but fluorescent when
hybridised to the specific amplicon strand.
Because the function of these oligoprobes depends
upon correct hybridisation of the stem and two
oligoprobes, their accurate design is crucial [8].

Finally, a self-quenching hairpin primer has
recently been described which is commercially
entitled the light upon extension (LUX) fluoro-
genic primer [71]. This chemistry is dark in the
absence of specific amplicon, through the natural
quenching ability of a carefully placed guanosine
nucleotide. The natural quencher is brought
into close proximity with the FAM or JOE
5¢ 2,7-dimethoxy-4,5-dichloro-6-carboxy-fluoroscein

fluorophore via a stretch of 5¢ and 3¢ comple-
mentary sequences. In the presence of specific
target, the primer hybridises, opening the hairpin
and permitting fluorescence from the fluoro-
phore.

M I C R O B I A L Q U A N T I T A T I O N

Although the terminology is often confused, real-
time PCR does not inherently imply quantitative
PCR. To quantify the amount of template present
in a sample, thought must be given to the type
and number of controls required. Standards are
used to allow calculation of the amount of
template present in a patient sample, while
internal controls (ICs) are mostly used to deter-
mine the occurrence of false-negative reactions,
examine the ability to amplify from a preparation
of nucleic acids, and, more rarely in real-time
PCR, as a standard for quantitation. Certainly, the
reliability of quantitative PCR methods is inti-
mately associated with the choice and quality of
the assay controls [72,73].

No matter what control is chosen, it is imper-
ative to accurately determine its concentration
[74] and to ensure that ICs are added at suitable
levels in order to prevent extreme competition
with the wild-type template for reagents [75]. The
use of a spectrometer is inadequate for quantitat-
ing a control molecule [76]; however, in combi-
nation with an experimental and statistical
analysis, the reliability of the values is greatly
enhanced [77–81]. Finally, one must remember
that the results of quantitation using a molecular
control need to be expressed relative to a suitable
biological marker, e.g., in terms of the volume of
plasma, the number of cells or the mass of tissue
or genomic nucleic acid, thus allowing compar-
ability between assay results and testing sites [82].

Standards for quantitation

Most commonly, an exogenous control is created
using a cloned amplicon, a portion of the target
organism’s genome, or simply the purified ampl-
icon itself [83]. This control forms the basis of an
external standard curve created from the data
produced by the individual amplification of a
dilution series of exogenous control. The concen-
tration of an unknown, which is amplified in the
same reaction, but in a separate vessel, can then
be found from the standard curve. While the
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external standard curve is the more commonly
described quantitative approach, it frequently
suffers from uncontrolled and unmonitored inter-
vessel variations. Some platforms have overcome
this issue by including a capacity to detect and
correct for variation in the emissions of a non-
participating, or ‘passive’, internal reference
fluorophore (6-carboxy-N,N,N¢,N¢-tetramethylrhod-
amine; ROX). The corrected values, obtained from
a ratio of the emission intensity of the fluorophore
and ROX, are called RQ+. To further control
amplification fluctuations, the fluorescence from a
‘no-template’ control reaction (RQ–) is subtracted
from RQ+, resulting in the DRQ value that
indicates the magnitude of the signal generated
for the given PCR [84]. Assays that lack this
capacity are more appropriately described as
semiquantitative.

Internal controls (ICs)

The use of an IC was described in the earliest of
PCR experiments as an important quality con-
trol [85,86], particularly when performing com-
petitive quantitation. When such a control is
added before template purification (extraction
control) or amplification (amplification control),
it is called an exogenous IC, since it does not
occur naturally within the nucleic acid pre-
paration, but is co-amplified within the same
reaction. Ideally, the IC should hybridise to the
same primers, have an identical amplification
efficiency [74,87], and contain a discrimin-
ating feature such as a change in its length
[72,72,75,88,89] or, more commonly in today’s
oligoprobe-based methods, a change in the seq-
uence [73,90] of the wild-type target [91,92].
However, IC templates that bind different prim-
ers or have different amplification efficiencies
can still prove useful as standards for semi-
quantitative PCR or relative quantitation.

An endogenous control is a template that
occurs naturally within the specimen being exam-
ined. Housekeeping genes often fulfill this role,
and they have been successfully used to quanti-
tate gene expression by RT-PCR and monitor the
integrity of a template after its purification [85].
When endogenous controls are used for the
quantitation of RNA, it is essential that the
housekeeping gene is minimally regulated and
exhibits a constant and cell cycle-independent
basal level of transcription [93]. This is not the

case for some commonly used genes such as
b-actin, whereas studies have shown that an 18S
rRNA target meets the desired criteria [93,94].

Relative vs. absolute quantitation

The amount of template in a sample can be
described either relatively or absolutely. Relative
quantitation is the simpler approach, and des-
cribes changes in the amount of a target sequence
compared to its level in a related matrix or within
the same matrix by comparison to the signal from
an endogenous or other reference control. Abso-
lute quantitation is more demanding but states
the exact number of nucleic acid targets present in
the sample in relation to a specific unit, making it
easier to compare data from different assays and
laboratories [7,95]. Absolute quantitation may be
necessary when there is a lack of sequential
specimens to demonstrate a relative change in
microbial load, or when no suitably standardised
reference reagent is available.

A highly accurate approach used for absolute
quantitation by conventional PCR utilises com-
petitive coamplification of one or a series of ICs of
known concentration with a wild-type target
nucleic acid of unknown concentration [96–99].
However, conventional competitive quantitation
is technically demanding, requiring significant
development and optimisation compared to
quantitation by real-time PCR, which is better
suited to the quick decision-making required in a
clinical environment [100–102]. Software with the
ability to calculate the concentration of an
unknown by comparing real-time PCR signals
generated by a coamplified target and IC is rare
but emerging [7]. In addition, new or improved
formulae are appearing which aim to make
quantitation more reliable and simpler [103].

Acquisition of fluorescence data

Fluorescence data generated by real-time PCR
assays are generally collected from PCR cycles
that occur within the linear amplification portion
of the reaction, where conditions are optimal and
the fluorescence accumulates in proportion to the
amplicon [52] (Fig. 2). This is in contrast to signal
detection from the endpoint of the reaction, where
the final amount of amplicon may have been
affected by inhibitors, poorly optimised reaction
conditions or saturation effects due to the
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presence of excess double-stranded amplicon. In
fact, at the endpoint there may be no relationship
between the initial template and final amplicon
concentrations. Because the emissions from fluor-
escent chemistries are temperature-dependent,
data are generally acquired only once ⁄ cycle, at
the same temperature [55].

The fractional cycle number at which the real-
time fluorescence signal mirrors progression of
the reaction above the background noise is used
as an indicator of successful target amplification
[104]. Most commonly, this is called the threshold
cycle (CT), but a similar value is described for the
LightCycler, and the fractional cycle is called the
crossing point (CP). The CT is defined as the PCR

cycle in which the gain in fluorescence generated
by the accumulating amplicon exceeds ten stand-
ard deviations of the mean baseline fluorescence,
using data taken from cycles 3–15 [105]. The CT

and CP are proportional to the number of target
copies present in the sample [29] and are assumed
to represent equal amounts of amplicon present in
each tube or capillary, since the CT and CP values
represent the fractional cycle number for each
sample at a single fluorescence intensity value. In
practice, the CT and CP are calculated after the
definition of a noise band that excludes data from
early PCR cycles that cannot be distinguished
from background noise. The final CT and CP

values are the fractional cycles at which a single
fluorescence value (usually at or close to the noise
band) intersects each sample’s plotted PCR curve
[104] (Fig. 2). The accuracy of the CT or CP

depends upon the concentration and nature of the
fluorescence-generating component, the amount
of template initially present, the sensitivity of the
platform, and the platform’s ability to discrimin-
ate specific fluorescence from background noise.

Improved quantitation using real-time PCR

Significant improvements in the quantitation of
microbial load by real-time PCR result from the
detection system’s enormous dynamic range,
which can accommodate at least eight log10 copies
of nucleic acid template [92,100,106–114]. The
broad dynamic range avoids the need for pre-
dilution of an amplicon before detection, or the
need to repeat an assay using a diluted sample
because a preliminary result falls outside the
limits of the assay. Both of these problems occur
commonly when using conventional endpoint
PCR assays for quantitation, as their detection
systems are unable to encompass the products of
high template loads while maintaining adequate
sensitivity [113,115–117]. The flexibility of real-
time PCR is further demonstrated by its ability to
detect one target in the presence of a vast excess
of another target during duplexed assays [109].

Real-time PCR is also a particularly attractive
alternative to conventional PCR for the study of
microbial load because of its low inter-assay and
intra-assay variability [100,112,118] and its equiv-
alent or improved sensitivity compared to micro-
bial culture, or conventional single-round and
nested PCR [17,100,110,119–126]. Real-time PCR
has been reported to be at least as sensitive as

Fig. 2. Kinetic analysis. The ideal amplification curve of a
real-time PCR (solid), when plotted as fluorescence inten-
sity against the cycle number, is a sigmoidal curve. Early
amplification cannot be viewed because the emissions are
masked by the background noise. However, when enough
amplicon is present, the assay’s exponential progress can
be monitored as the rate of amplification enters a linear
phase (LP). Under ideal conditions, the amount of ampl-
icon increases at a rate of one log10 every 3.32 cycles. As
primers and enzyme become limiting, and products
inhibitory to the PCR and overly competitive to oligoprobe
hybridisation accumulate, the reaction slows, entering a
transition phase (TP) and eventually reaching a plateau
phase (PP) where there is little or no increase in fluores-
cence. The point at which the fluorescence surpasses the
noise threshold (dashed horizontal line) is called the
threshold cycle or crossing point (CT or CP; indicated by
an arrow), and this value is used in the calculation of
template quantity during quantitative real-time PCR. Also
shown are curves representing a titration of template
(dashed curves), consisting of decreasing starting template
concentrations, which produce higher CT or CP values,
respectively. Data for the construction of a standard curve
are taken from the LP.
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Southern blot, still considered by some as the gold
standard for probe-based hybridisation assays
[122].

M I C R O B I A L G E N O T Y P I N G

Although nucleotide sequencing is still the gold
standard for characterising unknown nucleic
acids, it is a relatively lengthy process. The
development of real-time PCR has partially
addressed this failing by providing a tool capable
of routine detection of characterised mutations,
insertions or deletions.

Most fluorescent chemistries used for real-time
PCR do not rely upon a destructive process to
generate a signal. Therefore, they may be able to
perform a genotyping role at the completion of
the PCR. The SYBR green and HybProbe chem-
istries are most commonly used to perform these
analyses; however, the double-stranded and light-
up oligoprobes and HyBeacons should also func-
tion in this role. Other chemistries, such as the
TaqMan and Eclipse oligoprobes and hairpin
oligonucleotides, discriminate these nucleotide
changes using two sets of oligoprobes to differ-
entiate the wild-type from the altered sequences.
While this is a perfectly legitimate and functional
approach to genotyping by real-time PCR, the
extra fluorogenic oligonucleotides increase the
overall cost of the assay. Additionally, the num-
ber of different microbes that can be discrimin-
ated during multiplex real-time PCR is reduced,
since two fluorophores must be assigned to
analyse each microbe. The occurrence of a mis-
match between a hairpin oligonucleotide and its
target has a greater destabilising effect on the
duplex than the introduction of an equivalent
mismatch between the target and a linear oligo-
probe. This is because the hairpin structure
provides a highly stable alternative configuration.
Therefore, hairpin oligonucleotides are more spe-
cific than the more common linear oligoprobes,
making them ideal candidates for detecting SNPs
[68].

Genotyping data are obtained after the com-
pletion of the PCR, and therefore represent an
endpoint analysis. The amplicon is denatured and
rapidly cooled to encourage the formation of
fluorophore and target strand complexes. The
temperature is then gradually raised, and the
fluorescence from each vessel is continuously
recorded. The detection of sequence variation

using fluorescent chemistries relies upon the
destabilisation incurred as a result of the chan-
ge(s). The non-specific chemistries reflect these
changes in the context of the entire dsDNA
amplicon, requiring the dissociation of fluorogen-
ic molecules from the dsDNA, which only occurs
upon melting of the duplex. The sequence chan-
ges have a different impact upon the specific
fluorogenic chemistries, altering the expected TM

in a manner that reflects the particular nucleotide
change. The resulting rapid decrease in fluores-
cence using either approach can be presented as a
‘melt peak’ using software capable of calculating
the negative derivative of the fluorescence change
with temperature (Fig. 3).

Importantly, different nucleotide changes
destabilise hybridisation to different degrees,
and this can be incorporated into the design of
genotyping assays to ensure maximum discrim-
ination between melt peaks. The least destabilis-
ing mismatches include G (G:T, G:A and G:G),
whereas the most destabilising include C (C:C,
C:A and C:T) [127].

M U L T I P L E X R E A L - T I M E P C R

Multiplex PCR uses one or more primer sets to
potentially amplify multiple templates within a
single reaction [128,129]. However, its use in real-
time PCR has led to confusion in the traditional
terminology. Multiplex real-time PCR more com-
monly refers to the use of multiple fluorogenic
oligoprobes for the discrimination of amplicons
that may have been produced by one or several
primer pairs. The development of multiplex real-
time PCR has proven problematic because of the
limited number of fluorophores available [26] and
the frequent use of monochromatic energising
light sources. Although excitation by a single
wavelength produces bright emissions from a
suitably receptive fluorophore, the number of
fluorophores that can be excited by that wave-
length is limited [130].

The discovery and application of the non-
fluorescent quenchers has made available some
wavelengths that were previously occupied by
the emissions from the early quenchers them-
selves. This should permit the future inclusion of
a greater number of spectrally discernable oligo-
probes/reaction, and highlights the need for a
single non-fluorescent quencher that can quench
a broad range of emission wavelengths (e.g.,
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400–600 nm). The impressive electron-donating
properties of guanosine make it an ideal natural
quencher, and its use has contributed to the
growing number of assays that only require a
single fluorophore ⁄ target [131].

Early real-time PCR systems contained optim-
ised filter sets to minimise overlap of the emission
spectra from the fluorophores. Despite this, the
number of fluorophores that could be combined
and clearly distinguished was limited. More
recent real-time PCR platforms have incorporated
either multiple light-emitting diodes, or a tung-
sten light source that emits over a wide range of
wavelengths. When these platforms also incor-

porate high-quality optical filters, it is possible to
use many of the current real-time PCR detection
chemistries on the one machine. Unfortunately
some platforms are not suitably constructed. Even
if these improvements are included, the platform
can still only perform four-colour oligoprobe
multiplexing, and one colour is ideally set aside
for use as an IC. Some real-time PCR designs have
made use of conserved single or multiple nucleo-
tide changes among similar templates to allow
their differentiation by concurrent changes to the
oligoprobe’s TM or the amplicon’s TD [132,133].
Combining the use of multiple fluorophores with
the discrimination of additional targets by tem-
perature allows the identification of a significantly
larger number of amplicon targets [134]; however,
this combined approach has not been applied to
the diagnosis of infectious disease on a significant
scale [135], possibly because of the sequence
variation among many microbial genes [119,136–
139]. Far more commonly, this approach has been
used for the detection of human genetic diseases,
where as many as 27 possible nucleotide substi-
tutions have been detected using only one or two
fluorophores [140–147].

To date, there have been only a handful of
diagnostic microbial assays that can truly
co-amplify and discriminate more than two fluor-
ophores. An impressive multiplex, real-time PCR
protocol discriminated between four retroviral
target sequences [148]; however, conventional
multiplex PCR using endpoint detection has
easily discriminated between more than five
different amplified sequences, indicating a greater
degree of flexibility [149–154].

Future development of novel chemistries and
improved real-time instrumentation and software
should significantly improve the ability to multi-
plex fluorophores for enhanced real-time PCR
assays. Perhaps a chimera of real-time PCR and
microarray technology, in combination with
microfluidic devices, may advance all three tech-
nologies to a point where the desired number of
templates could be easily amplified and discrim-
inated.

S P E C I F I C A P P L I C A T I O N S F O R
M I C R O B I O L O G Y

Real-time PCR assays have been extremely useful
for studying microbial agents of infectious dis-
ease, where they have helped to clarify many

Fig. 3. Fluorescence melting curve analysis. At the com-
pletion of a real-time PCR using a fluorogenic chemistry,
the reaction can be cooled to a temperature below the
expected TM of the oligoprobes and then heated to above
90�C at a fraction of a degree/second (a). During heating,
the emissions of the reporter or acceptor fluorophore can
be constantly acquired (b). Software calculates the negative
derivative of the fluorescence with temperature, producing
a clear melt peak that indicates the TM of the oligoprobe–
target melting transition (black peak; c) or the TD of
melting dsDNA. When one or more nucleotide changes are
present, the TM or TD is shifted (grey peak). This shift is
reproducible and can be used diagnostically to genotype
microbial templates.
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disease processes. Most of the assays presented in
the literature have increased the frequency of
microbial detection compared to non-PCR tech-
niques, making the implementation of real-time
PCR attractive to many.

Of course, real-time PCR has also proven
valuable for basic microbiological research, where
its ability to amplify template from a wide array
of sample types (Table 1) has made it an ideal
system for application across the various micro-
biological disciplines [155]. Increasingly, these
applications are difficult to review, due to their
use as a tool within, rather than the focus of, a
published study.

Viruses

Within microbiology, the application of real-time
PCR has had the biggest impact upon the field of
virology, where studies have qualitatively inves-
tigated the role of viruses in a range of human
diseases [156]. Also, epidemiological studies of
co-infections have been improved by these
molecular techniques, which can reliably measure
the amount of two nucleic acid targets present
within a single sample [119,157,158]. Real-time
PCR has also improved the discrimination of
multiple viral genotypes within a single reaction
vessel [159] and provided an alternative to mor-
bidity and mortality assays for virus detection. An
example is Newcastle disease virus, which exists
as two radically different pathogenic phenotypes
caused by small nucleotide changes that can be

easily detected using fluorescence melting curve
analysis to reveal the genetic pathotype of the
strain [160].

Direct and indirect links between viral infection
and chronic conditions such as sarcoma [121,161–
164], carcinoma [122,165], cervical intra-epithelial
neoplasia [166–168] and lymphoproliferative
disorders [169,170] can be relatively easily
studied using real-time PCR. Other studies have
described the presence of flaviviruses [106,126,
171–176], hepadnaviruses [113,115,177], herpesvi-
ruses [30,40,100,102,107–109,116,119,121,122,137,
155,158,165,178–187], orthomyxoviruses [125],
parvoviruses [92], papovaviruses [32,139,159],
paramyxoviruses [124,160,188], pestiviruses [189],
picornaviruses [110,111,190–195], poxviruses [196],
retroviruses [118,123,197–200], rhabdoviruses
[201] and TT virus [202].

A significant number of studies have used PCR
to detect viral load, and have proved its useful-
ness as an indicator of the extent of active
infection, interactions between virus and host,
and the changes in viral load as a result of
antiviral therapies, all of which can play a role in
the treatment regimen selected [203–205]. Con-
ventional quantitative PCR has already proven
that the application of nucleic acid amplification
to the monitoring of viral load provides a useful
marker of disease progression and the efficacy of
antiviral compounds [97,204,206–210]. Because
disease severity and viral load are linked, the
use of real-time PCR quantitation has proven
beneficial when studying the role of viral reacti-
vation or persistence in the progression of disease
[40,102,107,108,119,158,165,171,183,184,187,211,
211–216]. Alterations to a microbe’s tropism or its
replication, and the effects that these changes
have on a host cell, can also be followed using
real-time PCR [217–219].

The role of highly sensitive and rapid real-time
PCR assays in the thorough assessment of viral
gene therapy vectors before their use in clinical
trials has become an important one. Nuclease
oligoprobes have been most commonly used for
these studies, which assess the biodistribution,
function and purity of the novel ‘drug’ prepara-
tions [199,220–225].

Likewise, the study of new and emerging
viruses has been ideally complemented by the
use of homogeneous real-time PCR assays as tools
to demonstrate and strengthen epidemiological
links between unique viral sequences and the

Table 1. An incomplete list indicating the extraordinary
variety of sample types from which nucleic acids can be
successfully prepared, amplified and detected using real-
time PCR assays

Nucleic acid origins References

Plants [293]
Animals [111,260]
Urban sludge [110]
Microbial culture [177,234,240,253,254,266,267,

280,284,292,294]
Solid tissues [172,198,238,256–258,271,288,

295]
Cerebrospinal fluid [136,190,192,194,248]
Peripheral blood

mononuclear cells
[183]

Bone marrow [120]
Whole blood [179,291]
Plasma [118]
Serum [171,172,180,279,287]
Swabs [192,259,296]
Bronchoalveolar lavage [243,246]
Amniotic fluid [286]
Saliva and sputum [158,233]
Faeces [264,285]
Urine [12,155,178]
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clinical signs and symptoms experienced by
patients [124,126,201,226–230].

The speed and flexibility of real-time PCR has
also proven useful for commercial interests who
require exquisite sensitivity to screen for micro-
bial contamination within large-scale reagent
preparations produced from eukaryotic expres-
sion systems [231,232].

Bacteria

The benefits to the patient from rapid real-time
PCR assays are most notable when applied to the
detection of bacteria. The results can quickly
inform the clinician as to the infection status of
the patient, allowing a more specific and timely
application of antibiotics. This can limit the
potential for toxicity due to shotgun treatment
regimens, reduce the duration of a hospital stay
and prevent the improper use of antibiotics, thus
minimising the potential for resistant strains to
emerge.

Broad applications of real-time PCR can aug-
ment or replace traditional culture or histochem-
ical assays, as was seen with the creation of a
molecular assay capable of classifying bacteria in
the same way as a Gram stain [233]. However,
specific bacterial species are more frequently the
focus for real-time PCR assays, especially when
long culture times can be replaced by rapid and
specific gene detection. Leptospira genospecies,
Mycobacterium and Propionibacterium spp., Chla-
mydia spp., Legionella pneumophila and Listeria
monocytogenes have all been detected and in some
cases quantitated with the use of real-time PCR
assays [41,234–246].

The detection of Neisseria gonorrhoeae has bene-
fited from real-time PCR, particularly in the role
of a confirmatory test when the specificity of
commercial assays fails [247]. This example high-
lights the need for care when choosing a bacterial
PCR target, especially when that target exists on a
plasmid that is exchanged among other bacteria,
providing potentially confusing diagnostic
results. Neisseria meningitidis causes meningococ-
cal disease, and real-time PCR has proven to be a
powerful tool that can be quickly developed for
the rapid discrimination of currently circulating
pathogens [248].

The detection and monitoring of antibiotic
resistance among clinical isolates of Staphylococcus
aureus, Staphylococcus epidermidis, Helicobacter

pylori, Enterococcus faecalis and Enterococcus fae-
cium has also benefited from real-time applica-
tions [249–258]. Additionally, the understanding
and treatment of fulminant diseases such as
meningitis, sepsis, inflammatory bowel disease
and food-poisoning caused by characterised bac-
teria such as the group B streptococci and Myco-
bacterium spp., Escherichia coli and Bacteroides
vulgatus [259–265] have been enhanced by the
speedy return of results, which also aids tracking
of microbial outbreaks to their source.

Real-time PCR has made possible the rapid
quantitation and differentiation of some of the
more exotic pathogenic bacteria, such as the tick-
borne spirochete Borrelia burgdorferi [266–268] and
the methanotropic bioremediating Methylocystis
spp. [269].

The involvement of treponemes in the devel-
opment of periodontal disease has been studied
using 5¢ nuclease chemistry, revealing a microbial
role in every stage [270]. In addition, measure-
ment of the bacterial load of Tropheryma whipplei
has allowed the discrimination of environmental
contamination and low-level colonisation from
active infection [271].

More recently, there has been an explosion of
literature indicating that real-time PCR is the tool
of choice for the rapid detection of microbes used
as agents of biological warfare. In some cases, the
assays have allowed rapid discrimination of
weaponised pathogens from the harmless labor-
atory-adapted or vaccine-related strains. At the
forefront of the available literature are assays to
detect Bacillus anthracis spores and the bacterium’s
virulence-encoding plasmids or chromosomal
markers [272,273,273–277]. Conventional assays
may take 48 h to complete, and, for obvious
reasons, this is an unacceptable lag period.

Fungi, parasites and protozoans

The smallest number of applications have been
related to the study of fungal, parasitic and
protozoan pathogens of humans. Nonetheless,
real-time PCR assays have significantly contribu-
ted to the general diagnosis of invasive disease
caused by Aspergillus fumigatus and Aspergillus
flavus [278,279]. Also, monitoring the transcription
levels of certain Aspergillus nidulans transporter
genes has provided important information about
their role in multiresistance [280]. In addition,
real-time assays have been used when investi-
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gating buildings for the presence of potentially
harmful levels of toxigenic fungal spores, or
conidia, such as those produced by Stachybotrys
chartarum [281–283].

Cryptosporidium parvum oocysts and the spores
from Encephalitozoon spp. have been successfully
genotyped or speciated using real-time PCR,
which has significantly improved on laboratory
diagnosis using microscopy and histochemical
staining, especially for low concentrations of
excreted material [284,285].

Rapid serological detection of Toxoplasma gondii
is often hampered by the presence of the parasite
in patients who are immunocompromised. Addi-
tionally, the length of time required for traditional
culture or mouse inoculation is excessive. There-
fore, rapid molecular methods have vastly
improved the detection of this microbe [120,286].
Additionally, this technology is useful for the
study of T. gondii responses to antimicrobial
therapies [287].

Detection of malarial parasites using a mouse
model in combination with real-time PCR has
improved result turnaround time and meant that
parasite load data can be generated [288,289].
Real-time PCR has also proven useful for direct
in-vivo detection and quantitation of malarial
parasites with a high level of sensitivity [290,291],
in addition to monitoring the stage-specific mat-
uration of Plasmodium falciparum via the transcrip-
tion of specific genes [292].

C O N C L U S I O N S A N D S U M M A R Y

Microbiology is ideally suited for the benefits of
sensitivity and rapidity that PCR has brought to
the research laboratory. However, the advent of
real-time PCR has further improved the role of
PCR in the high-throughput environment by
adding a detection system capable of enormous
dynamic range, homogeneity of amplification and
detection, and the ability to genotype an ampli-
fied nucleic acid without the need for additional
steps. Unfortunately, many of the genotyping
applications have been trialled first in the field of
human genetics, where there is frequently a more
abundant source of template, and the genetic
changes, once characterised, remain constant.
Nonetheless, this review has highlighted the
general acceptance of real-time PCR in the
research and diagnostic microbiology laboratory,
and its popularity is continuing to expand.

Advances in the development of fluorophores,
nucleotide labelling and the novel application of
oligoprobe hybridisation have provided real-time
PCR technology with a broad enough commercial
base to promote its usefulness to the wider non-
research scientific community. Robotic nucleic
acid extraction and liquid-handling systems, com-
bined with rapid thermal cyclers and instrumen-
tation capable of detecting and differentiating
multiple amplicons using many of the chemistries
described in this and other reviews, make real-
time PCR an attractive and viable proposition for
the routine diagnostic laboratory. Many laborat-
ories rely upon tissue culture to isolate microbial
agents of infectious disease, in combination with
serological methods to further confirm the iden-
tity of the isolates or to monitor a patient’s
immune response to an infectious agent. Such
methods, while providing an important source of
information about unknown and emerging path-
ogens, may take a prolonged and clinically signi-
ficant amount of time to complete.

According to the literature, the most widely
used fluorogenic probe format is the 5¢ nuclease
oligoprobe, although that is most likely due to its
commercial maturity. The rate of publications
describing other methods, especially those utilis-
ing the LightCycler in combination with a pair of
HybProbes, is significant and changing the bal-
ance rapidly, especially in the area of microbial
detection and genotyping. There are also more
virus-detecting real-time PCR applications des-
cribed in the literature than for any other microbe.
The more recently developed oligoprobe chemis-
tries have been used in only a few innovative
applications, but they will be better understood as
their benefits and limitations are more widely
described, and hopefully they will allow a greater
variety of options for microbial genotyping.

Recent developments in multiplex real-time
PCR have suggested a future in which easy
identification, genotyping and quantitation of
microbial targets in single, rapid reactions will
be commonplace. Of course, real-time PCR is by
no means restricted to microbiology, as significant
achievements have already been made in the area
of human genetic diagnostics, applying all the
benefits of real-time PCR to enhance the detection
of genetic disease. However, the technology is
only as reliable as the accompanying controls and
associated quality assurance programmes. This
includes the quality of standards, the use of
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suitably controlled standard curves, and the need
to fully optimise, validate and evaluate each and
every new assay against previously standardised
assays. Without such care, real-time PCR will
provide fast but inaccurate data to the clinician,
who will surely come to rely upon such assays,
as they represent a growing proportion of the
result-generating tests within the diagnostic
microbiology environment. In addition, commer-
cial interests will undoubtedly play an expanding
role in determining which technologies enter into
the mainstream.

Perhaps in combination with micro- and
macroarray technology and emerging microflui-
dic devices, real-time PCR assays that can dis-
criminate as many targets as desired, while
producing quantitative data at a greatly increased
speed, will consolidate fluorogenic nucleic acid
amplification as a routine and incredibly power-
ful tool for the laboratory of tomorrow.
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120. Kupferschmidt O, Krüger D, Held TK, Ellerbrok H,
Siegert W, Janitschke K. Quantitative detection of Toxo-
plasma gondii DNA in human body fluids by TaqMan
polymerase chain reaction. Clin Microbiol Infect 2001; 7:
120–124.

121. Kennedy MM, Lucas SB, Russell-Jones R et al. HHV8
and female Kaposi’s sarcoma. J Pathol 1997; 183: 447–452.

122. Capone RB, Pai SI, Koch WM, Gillison ML. Detection and
quantitation of human papillomavirus (HPV) DNA in the
sera of patients with HPV-associated head and neck
squamous cell carcinoma. Clin Cancer Res 2001; 6: 4171–
4175.

123. Leutenegger CM, Klein D, Hofmann-Lehmann R et al.
Rapid feline immunodeficiency virus provirus quantita-
tion by polymerase chain reaction using the TaqMan
fluorogenic real-time detection system. J Virol Meth 1999;
78: 105–116.

124. Smith IL, Halpin K, Warrilow D, Smith GA. Development
of a fluorogenic RT-PCR assay (TaqMan) for the detection
of Hendra virus. J Virol Meth 2001; 98: 33–40.

125. van Elden LJR, Nijhuis M, Schipper P, Schuurman R, van
Loon AM. Simultaneous detection of influenza viruses A
and B using real-time quantitative PCR. J Clin Microbiol
2001; 39: 196–200.

126. Lanciotti RS, Kerst AJ, Nasci RS et al. Rapid detection
of west nile virus from human clinical specimens, field-
collected mosquitoes, and avian samples by a TaqMan
reverse transcriptase-PCR assay. J Clin Microbiol 2000; 38:
4066–4071.

127. Bernard PS, Lay MJ, Wittwer CT. Integrated amplification
and detection of the C677T point mutation in the meth-
yltetrahydrofolate reductase gene by fluorescence reson-
ance energy transfer and probe melting curves. Anal
Biochem 1998; 255: 101–107.

128. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Cas-
key CT. Deletion screening of the Duchenne muscular
dystrophy locus via multiplex DNA amplification.
Nucleic Acids Res 1988; 16: 11141–11156.

129. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multi-
plex PCR: optimization and application in diagnostic
virology. Clin Microbiol Rev 2000; 13: 559–570.

130. Tyagi S, Marras SAE, Kramer FR. Wavelength-shifting
molecular beacons. Nat Biotechnol 2000; 18: 1191–1196.

131. Nazarenko I, Pires R, Lowe B, Obaidy M, Raschtchian A.
Effect of primary and secondary structure of oligode-
oxyribonucleotides on the fluorescent properties of con-
jugated dyes. Nucleic Acids Res 2002; 30: 2089–2195.

132. Espy MJ, Uhl JR, Mitchell PS et al. Diagnosis of herpes
simplex virus infections in the clinical laboratory by
LightCycler PCR. J Clin Microbiol 2000; 38: 795–799.

133. Nicolas L, Milon G, Prina E. Rapid differentiation of old
world Leishmania species by LightCycler polymerase
chain reaction and melting curve analysis. J Microbiol
Meth 2002; 51: 295–299.

134. Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-
Johnson KSJ. Real-time multiplex PCR assays. Methods
2001; 25: 430–442.

135. Espy MJ, Ross TK, Teo R et al. Evaluation of LightCycler
PCR for implementation of laboratory diagnosis of her-
pes simplex virus infections. J Clin Microbiol 2000; 38:
3116–3118.

136. Schalasta G, Arents A, Schmid M, Braun RW, Enders G.
Fast and type-specific analysis of herpes simplex virus
types 1 and 2 by rapid PCR and fluorescence melting-
curve-analysis. Infection 2000; 28: 85–91.

137. Loparev VN, McCaustland K, Holloway BP, Krause PR,
Takayama M, Schmid DS. Rapid genotyping of varicella-
zoster virus vaccine and wild-type strains with fluoro-
phore-labeled hybridization probes. J Clin Microbiol 2000;
38: 4315–4319.

206 Clinical Microbiology and Infection, Volume 10 Number 3, March 2004

� 2004 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 10, 190–212



138. Read SJ, Mitchell JL, Fink CG. LightCycler multiplex PCR
for the laboratory diagnosis of common viral infections of
the central nervous system. J Clin Microbiol 2001; 39:
3056–3059.

139. Whiley DM, Mackay IM, Sloots TP. Detection and
differentiation of human polyomaviruses JC and BK
by LightCycler PCR. J Clin Microbiol 2001; 39: 4357–4361.
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150. Weigl JAI, Puppe W, Gröndahl B, Schmitt H-J. Epide-
miological investigation of nine respiratory pathogens in
hospitalized children in Germany using multiplex
reverse-transcriptase polymerase chain reaction. Eur J
Clin Microbiol Infect Dis 2000; 19: 336–343.

151. Stockton J, Ellis JS, Saville M, Clewley JP, Zambon MC.
Multiplex PCR for typing and subtyping influenza and
respiratory syncytial viruses. J Clin Microbiol 1998; 36:
2990–2995.

152. Kehl SC, Henrickson KJ, Hua W, Fan J. Evaluation of the
hexaplex assay for detection of respiratory viruses in
children. J Clin Microbiol 2001; 39: 1696–1701.

153. Echevarria JE, Erdman DD, Swierkosz EM, Holloway BP,
Anderson LJ. Simultaneous detection and identification
of human parainfluenza viruses 1, 2, and 3 from clinical
samples by multiplex PCR. J Clin Microbiol 1998; 36: 1388–
1391.

154. Henegariu O, Heerema NA, Dloughy SR, Vance GH,
Vogt PH. Multiplex PCR: critical parameters and step-
by-step protocol. Biotechniques 1997; 23: 504–511.

155. Schalasta G, Eggers M, Schmid M, Enders G. Analysis of
human cytomegalovirus DNA in urines of newborns and
infants by means of a new ultrarapid real-time PCR-
system. J Clin Virol 2000; 19: 175–185.

156. Kato T, Mizokami M, Mukaide M et al. Development of a
TT virus DNA quantification system using real-time
detection PCR. J Clin Microbiol 2000; 38: 94–98.

157. Zerr DM, Huang M-L, Corey L, Erickson M, Parker HL,
Frenkel LM. Sensitive method for detection of human
herpesvirus 6 and 7 in saliva collected in field studies. J
Clin Microbiol 2000; 38: 1981–1983.

158. Furuta Y, Ohtani F, Sawa H, Fukuda S, Inuyama Y.
Quantitation of varicella-zoster virus DNA in patients
with Ramsay Hunt syndrome and zoster sine herpete. J
Clin Microbiol 2001; 39: 2856–2859.

159. Jordens JZ, Lanham S, Pickett MA, Amarasekara S,
Aberywickrema I, Watt PJ. Amplification with molecular
beacon primers and reverse line blotting for the detection
and typing of human papillomaviruses. J Virol Meth 2000;
89: 29–37.

160. Aldous EW, Collins MS, McGoldrick A, Alexander DJ.
Rapid pathotyping of Newcastle disease virus (NDV)
using fluorogenic probes in a PCR assay. Vet Microbiol
2001; 80: 201–212.

161. Kennedy MM, Lucas SB, Jones RR et al. HHV8 and
Kaposi’s sarcoma: a time cohort study. J Clin Pathol 1997;
50: 96–100.

162. Kennedy MM, Cooper K, Howells DD et al. Identification
of HHV8 in early Kaposi’s sarcoma: implications for
Kaposi’s sarcoma pathogenesis. J Clin Pathol 1998; 51:
14–20.

163. O’Leary JJ, Kennedy M, Luttich K et al. Localisation of
HHV-8 in AIDS related lymphadenopathy. J Clin Pathol
2000; 53: 43–47.

164. O’Leary J, Kennedy M, Howells D et al. Cellular
localisation of HHV-8 in Castleman’s disease: is there a
link with lymphnode vascularity? J Clin Pathol 2000; 53:
69–76.

165. Lo YMD, Chan LYS, Lo K-W et al. Quantitative analysis
of cell-free Epstein–Barr virus DNA in plasma of patients
with nasopharyngeal carcinoma. Cancer Res 1999; 59:
1188–1191.

166. Josefsson A, Livak K, Gyllensten U. Detection and
quantitation of human papillomavirus by using the
fluorescent 5¢ exonuclease assay. J Clin Microbiol 1999; 37:
490–496.

167. Swan DC, Tucker RA, Holloway BP, Icenogle JP. A sen-
sitive, type-specific, fluorogenic probe assay for detection
of human papillomavirus DNA. J Clin Microbiol 1997; 35:
886–891.

168. Lanham S, Herbert A, Watt P. HPV detection and
measurement of HPV-16, telomerase, and surviving
transcripts in colposcopy clinic patients. J Clin Pathol
2001; 54: 304–308.

169. MacKenzie J, Gallagher A, Clayton RA et al. Screening for
herpesvirus genomes in common acute lymphoblastic
leukemia. Leukemia 2001; 15: 415–421.

170. Jabs WJ, Hennig H, Kittel M et al. Normalized quantifi-
cation by real-time PCR of Epstein–Barr virus load in
patients at risk for posttransplant lymphoproliferative
disorders. J Clin Microbiol 2001; 39: 564–569.

171. Laue T, Emmerich P, Schmitz H. Detection of dengue
virus RNA inpatients after primary or secondary dengue

Mackay Real-time PCR in the microbiology laboratory 207

� 2004 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 10, 190–212



infection by using the TaqMan automated amplification
system. J Clin Microbiol 1999; 37: 2543–2547.

172. White PA, Pan Y, Freeman AJ et al. Quantification of
hepatitis C virus in human liver and serum samples by
using LightCycler reverse transcriptase PCR. J Clin
Microbiol 2002; 40: 4346–4348.

173. Callahan JD, Wu S-JL, Dion-Schultz A et al. Development
and evaluation of serotype- and group-specific fluoro-
genic reverse transcriptase PCR (TaqMan) assays for
dengue virus. J Clin Microbiol 2001; 39: 4119–4124.

174. Ratge D, Scheiblhuber B, Landt O, Berg J, Knabbe C.
Two-round rapid-cycle RT-PCR in single closed capil-
laries increases the sensitivity of HCV RNA detection
and avoids amplicon carry-over. J Clin Virol 2002; 24:
161–172.

175. Komurian-Pradel F, Paranhos-Baccalà G, Sodoyer M et al.
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