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Single-cell gene-expression profiling
Gene expression-based diagnostics are normally 
performed on large amount of RNA extracted 
from tissue, blood or cell suspensions. Carefully 
optimized assays for gene-expression profiling 
are generally robust and rarely fail when large 
quantities of transcripts are available. However, 
there is also a strong need to analyze small biop-
sies, and a small number of transcripts is techni-
cally more challenging to handle and difficult 
to quantify accurately. Minimal invasive sample 
collection minimizes patient trauma and is more 
suitable for repetitive sampling. Single-cell diag-
nostics offers a means to identify and character-
ize different cell types in samples and to also 
reveal heterogeneity between cells of the same 
type. Furthermore, high-throughput single-cell 
analysis allows identification of rare cells that are 
of diagnostic importance, such as cancer stem 
cells and circulating tumor cells. In this article, 
we discuss aspects of single-cell gene-expression 
profiling using reverse transcription quantita-
tive real-time PCR (RT-qPCR) and its potential 
use in diagnostic applications, in particular for 
tumor diagnostics.

Cells are individual and unique units that can 
work both independently and together in tissues 
and organs. Organisms, organs and cells respond 
to stimuli by activating and silencing specific 
genes. Furthermore, individual cells, even cells 

generated from the same genetic clone, respond 
with distinct gene-expression profiles to iden-
tical stimuli [1,2]. Single-cell heterogeneity has 
been recognized since the 1950s [3]. However, 
technical limitations related to analyzing few 
molecules were first overcome in the last dec-
ade [1,4–6]. Different approaches have been used 
to quantify the number of specific transcripts 
in single cells: qPCR [6–8], microarrays [9,10], the 
MS2 system [11,12], in situ padlock probes fol-
lowed by rolling-circle amplification [13], next-
generation sequencing [14] and FISH [5,15,16]. 
The MS2 system requires cloning, but offers 
the means to monitor the transcript levels over 
time in live cells [11,12]. All other methods, except 
FISH, require a cDNA synthesis step followed 
by preamplification. FISH allows transcripts to 
be quantified directly. One drawback of FISH 
is that only a few genes can be analyzed at the 
same time, owing to spectral overlap of classical 
fluorophores. The use of multiple fluorophores 
arranged in barcodes can solve the multiplex 
problem [17,18]. Next-generation sequencing, 
compared with microarrays and qPCR, allows 
unknown RNA molecules to be identified 
and quantified. Here, we focus on the use of 
RT-qPCR to measure gene expression in single 
cells. RT-qPCR is commonly used to analyze 
from one up to 100 different transcripts, and 
preamplification can be avoided if only a few 
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genes are analyzed. RT-qPCR is characterized by large dynamic 
range, excellent reproducibility and sufficient sensitivity to 
detect a single transcript [6–8,19,20]. High-throughput systems, 
such as the BioMark™ (Fluidigm) and the OpenArray® (Applied 
Biosystems) platforms, are preferred if many different transcripts 
and samples are to be analyzed. These systems can, in parallel, 
measure 96 samples each for 96 genes and 48 samples each for 
64 genes, respectively.

Technical aspects of single-cell gene-expression 
profiling using RT-qPCR
Single-cell gene-expression profiling based on RT-qPCR includes 
several sequential experimental steps (Figure 1). To achieve repro-
ducible and reliable single-cell gene-expression data, each 
experimental step must be carefully optimized and validated to 
minimize transcript losses. 

The initial cell collection is the experimental step that is most 
different compared with protocols based on traditional samples. 
Single cells can be collected by three main methods: micro-
aspiration [6,8,20–22], flow cytometry [7,19,23] and laser capture 
microdissection [24,25]. Many variants and protocols have been 
developed for various applications. One factor to consider when 
collecting individual cells is bias caused by the collection process. 
Flow cytometry and sometimes microaspiration require cells to 
be dissociated into single-cells before collection, which may affect 
the gene-expression profile measured. Microdissection followed 
by laser capture can be applied directly on tissues. Hence, the 
origin and morphology of the cells collected are known. This 
typically requires tissue fixation. Collection of fixed cells will not 
be affected by the collection method itself, but cell fixation will 
result in unwanted RNA losses and degradation, and generally 
require additional extraction steps. By contrast, flow cytometry 
and microaspiration are most often applied to collect living cells.

Classical samples with high numbers of cells must be extracted 
to generate pure RNA without inhibitors for successful measure-
ments. In single-cell analysis, because of RNA losses, standard 
extraction protocols are not suitable. Instead, purification-free 
protocols have been developed. Several lysis options are avail-
able, including CelluLyser (TATAA Biocenter), Real-time Ready 
Cell Lysis (Roche Diagnostics), Single Cell-to-CT™ (Life 
Technologies) and noncommercial lysis buffers [20]. Efficient 
lysis should disrupt cell membranes, make RNA accessible for 
reverse transcriptase, maintain RNA integrity and be compatible 
with RT, preamplification and qPCR. Our unpublished data 

indicate that different cell types require somewhat different lysis 
condition for efficient lysis [Ståhlberg A et al., Unpublished Data]. For 
example, primary pancreatic b-cells were most efficiently lyzed 
using guanidine thiocyanate, while primary astrocytes could be 
equally efficiently lysed with water.

Quantitative real-time PCR should, when possible, be per-
formed and reported according to the Minimum Information 
for Publication of Quantitative Real-Time PCR Experiments 
guidelines [26]. In single-cell studies, it is important to have high 
RT efficiency, converting as many target transcripts as possible 
to cDNA. RT is sequence dependent and the efficiency depends 
on RNA secondary and tertiary structures, reverse transcriptase, 
priming strategy and additives [27,28]. qPCR assays optimized for 
single-cell analysis must have high sensitivity and maintain target 
specificity for up to 50 cycless of amplification without generat-
ing any nonspecific PCR products, such as primer dimers. Gene 
expression measurements on single-cell level that yield no sig-
nal/readout cannot be considered experimental failures. The lack 
of a specific PCR product reflects that the number of transcripts 
in that particular cell is between zero and the level of detection 
of the assay. The level of detection of optimized qPCR assays are 
often only a few cDNA molecules in a confined system, but the 
level of detection at RNA level is usually not known. To determine 
the level of detection of RT-qPCR assays, the corresponding full-
length mRNA molecules should be generated and quantified by 
another method, allowing evaluation of RT-qPCR specificity and 
sensitivity [28]. Unless this is performed, claims cannot be made 
stating that a specific transcript is not expressed at all in defined 
cells based on negative RT-qPCR measurements. 

Analyses of many genes require preamplification. The number 
of different transcripts that can be measured without pre-
amplification depends on absolute transcript levels and the number 
of cells analyzed. Expression of more genes can be measured if the 
total number of cells analyzed is high. Ten genes expressed at high 
or intermediate levels measured in some 100 individual cells have 
been shown to be sufficient to identify cell subpopulations with-
out the need of preamplification [19]. In general, preamplification 
should be used restrictively, since it is an additional experimental 
step that contributes confounding noise and may introduce bias 
to generated data. Preamplification can be either specific or glo-
bal using either linear [29] or exponential [30] amplification. The 
most common strategy for single-cell RT-qPCR is to amplify 
cDNA by multiplex PCR using specific primers that are identi-
cal to those used in the qPCR assays, but at substantially lower 

Cell collection Lysis Reverse transcription Preamplification Real-time PCR Data analysis

Figure 1. Overview of single-cell gene-expression profiling using real-time quantitative PCR.
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concentrations. The preamplification PCR step is performed in a 
limited number of cycles to avoid competition for reagents among 
parallel reactions. However, the amplification efficiency is usually 
lower during preamplification compared with the downstream 
qPCR. For further information on preamplication methods, 
see [31–34].

Gene expression in eukaryotic cells is in part a stochastic proc-
ess and transcription occurs in bursts, which result in transcript 
variability between individual cells, even of the same kind [35,36]. 
Consequently, no gene can be used as reference to normalize 
expression in single cells, which is common for samples generated 
from large number of cells. The intuitive way to present expres-
sion data measured on single cells are per cell (Figure 2A). Possible 
limitations of normalizing per unit are that variations in lysis 
efficiency, RNA degradation and RT yield are not considered. 
The use of an RNA molecule with an unique sequence that do not 
exist in the species studied, that is, alien RNA spike, added to the 
lysis buffer can partially account for these effects [20]. However, 
an exogenous RNA spike may not behave as endogenous RNA, 
since the latter is RNA that is initially affected by the local envi-
ronment within the cell before cell lysis is completed. It is better 
to inject the RNA spike into the cell in known quantity, but this 
is technically challenging. If many genes are analyzed, a glo-
bal normalization strategy, similar to microarray normalization, 
could possibly be applied. Another option is to normalize with 
transcripts containing repetitive sequences, such as expressed 
Alu repeats. The drawback of measuring Alu repeats is that such 
assays are very sensitive to contamination [37]. The increasing 
number of single-cell gene-expression profiling studies, will pro-
vide further insights into advantages and limitations of different 
normalization strategies. 

Another aspect to consider when dealing with single-cell data is 
that the distributions of transcripts are heavily skewed (Figure 2B). 
Most distributions show lognormal features (Figure 2C) [5–7,19]. The 
median cell is best represented by the geometric mean if tran-
scripts are lognormally distributed. Single-cell data can be ana-
lyzed with several different approaches to reveal important infor-
mation regarding transcripts and their expression pattern among 
cells. Binary data analysis, for example, if a specific transcript is 

expressed or not in a given cell, can be used to evaluate if biomark-
ers are uniquely expressed or not. Characteristics of different cell 
populations are typically described by basic statistical parameters, 
such as the number of cells expressing respective transcript, mean, 
standard deviation and distribution parameters such as skewness 
and kurtosis. Visualization of data, including heat maps (both 
for binary and numerical data) and distributions of transcripts, 
is usually very informative to understand cell heterogeneity and 
gene-expression patterns. Correlation studies can be applied to 
single-cell data to reveal gene networks that cannot be identified 
at cell population level [19]. Furthermore, hierarchical cluster-
ing, principal component analysis and Kohonen self-organizing 
maps have been successfully applied to group genes and cells 
to known cell types, but also to identify previously unknown 
subpopulations [9,19,22].

Diagnostic applications using single-cell analysis
Single-cell analysis is not yet common in diagnostics. Although, 
one important application is the use in preimplantation genetic 
diagnosis (PGD) at genomic level. PGD was already described 
in 1990 for X-chromosome linked diseases [38]. Male and female 
embryos were distinguished using of a Y-chromosome specific 
PCR and only female embryos were transferred. PGD falls mainly 
into two categories: low- and high-risk PGD. The high-risk group 
refers to individuals that may have genetic diseases, while the low-
risk group refers to individuals for which embryos are screened 
for chromosome aneuploides. The latter is used to select suit-
able embryos, thus increasing the in vitro fertilization pregnancy 
rate [39,40].

The main problem of establishing robust tumor diagnos-
tics based on analyzing classical samples generated from large 
number of cells using gene-expression profiling is tumor diver-
sity. Tumors are unique in cell composition and they contain 
a mix of tumor cells, all with differences in growth, migration 
and survival capacity. Suitable biomarkers have often been dif-
ficult to identify and verify, since many transcripts are expressed 
at highly variable levels in different cell subpopulations. The 
capability to select and analyze individual cells has therefore a 
great potential in tumor diagnostics. Genomic analysis can be 
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Figure 2. Single-cell gene-expression data. Relative expression of fusion transcript FUSDDIT3 in 88 single myxoid/round cell 
liposarcoma cells (A). Distribution of FUSDDIT3 in linear (B) and log10 (C) scales.
Data taken from [Ståhlberg A et al., Unpublished Data].
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used to characterize and follow clonal subpopulations of tumor 
cells characterized by different genomic aberrations. Analyses 
of primary tumors, circulating tumor cells and tumor cells at 
metastatic sites allow tumor progression to be monitored before 
and after treatment [41]. Single-cell gene-expression profiling 
can also be used to identify and characterize different cell types 
within a tumor when cells carry identical genomes, including 
nontumor cells (Figure 3A). It can also be used to study cell het-
erogeneity among seemingly identical tumor cells (Figure 3B). 
Single-cell analysis can be used to identify and count key cells 
even if they are rare, such as cancer stem cells and circulating 
tumor cells, with deterministic value in diagnostic and prog-
nostic applications. In addition, gene-expression profiling can 
be used to measure biomarkers and correlate their expression 
to defined cell types and cell sub populations at the single-cell 
level. These measurements will eliminate confounding data of 
noninformative cells that affect the gene-expression profiles of 
classical tumor samples.

Immunostaining relates protein expression to cell morphology 
and tissue histology, respectively, and is readily performed with 
single-cell resolution. This correlation is lost when gene-expression 
profiling is performed on classical samples. The main limitation 
of immunostaining is that only a few proteins can be analyzed 
in each cell, while in principle, the complete transcriptome can 
be assessed in single-cells. Single-cell gene-expression profiling 
opens new avenues to analyze individual cells in complex samples. 
In addition to transcript measurements, information regarding 
protein expression, cell morphology and histology can often be 
collected for the same analyzed cells. Microdissection followed by 
laser capture allows proteins and transcripts to be analyzed in the 
same biological sample. If rare tumor cells, like cancer stem cells 
and circulating tumor cells, are studied, fluorescence-activated 
cell sorting may be used to enrich specific cell populations. One 
restriction of using fluorescence-activated cell sorting and other 
similar cell enrichment systems is that they require markers that 
are exclusively expressed in or at the surface of the cell of interest. 
Isolation of various hematopoietic subpopulations has been suc-
cessful, using combination of different surface markers. However, 
most other cell subtypes can presently not be isolated, since we are 
lacking the knowledge of specific surface markers. Intracellular 
markers can be used for cell enrichment if the cells are fixed, but 
surface markers are preferred, since fixation causes RNA loss and 
increases the risk of cross contamination of transcripts between 
individual cells. Identification and validation of surface markers 

and biomarkers for diagnostic and prognostic purpose is an itera-
tive process. The predictive power of the biomarker analysis will 
increase if we can enrich for informative tumor cells, since we 
currently cannot analyze all cells in a tumor at single-cell level. 
However, to identify and validate useful markers for cell collec-
tion we need to correlate their expression to potential biomarkers. 
By improving the specificity of the cell collection and enriching 
for more representative cells, the biomarker analyses for diagnostic 
and prognostic purposes will be refined for each round of evalua-
tion. Specific tumor surface markers can also serve as biomarkers, 
especially when cancer stem cells and circulating tumor cells are 
counted and studied. If a cell representative for the whole tumor 
existed, one cell would still not be sufficient to perform reliable 
molecular diagnosis and prognosis, since there is substantial het-
erogeneity among cells, even tumor cells, generated from the same 
clone. Large numbers of individual tumor cells must therefore 
be analyzed, both to reveal cell heterogeneity and to identify 
rare subpopulation of cells, such as cancer stem cells, that may 
be critical for the treatment of the tumor. The predictive power 
of the test improves with increasing numbers of cells analyzed. 

Another research field where single-cell gene-expression 
profiling is expected to be important is regenerative medicine. 
Induced pluripotent stem cells and embryonic stem cells are 
self-renewing pluripotent stem cells with the unique capacity to 
generate any cell type in the body. This capability is the basis 
for considering pluripotent stem cells as an unlimited source of 
cells for replacement therapies and for the treatment of a wide 
range of diseases, including diabetes mellitus and Alzheimer’s 
and Parkinson’s diseases. However, stem cells must be com-
pletely differentiated to target cell types. Terminally differen-
tiated cells then need to be isolated and characterized before 
their full potential in the clinic can be applied. Here, single-cell 
analysis can serve as an important tool for cell characteriza-
tion. Several reports have indicated high heterogeneity among 
un differentiated and differentiated stem cells at single-cell level 
using RT-qPCR [22,23,42]. 

Expert commentary
Today, several methods are available for reliable single-cell gene-
expression measurements, all having their advantages and limi-
tations. RT-qPCR is probably the simplest experimental system 
to work with, since most molecular biologists are familiar with 
RT-qPCR and have access to the equipment needed. The system is 
flexible: it is easy to change target transcripts and cells to analyze, 
and all available instrument platforms and detection chemistries 
can be applied. Owing to the small number of transcripts per 
cell, each experimental step needs careful optimization. Good 
laboratory practice is also essential for reliable single-cell experi-
ments, in particular avoiding contamination. Sample preparation 
and cell collection are the main bottlenecks for RT-qPCR and 
most other single-cell techniques. No matter what the cell col-
lection method applied, is users should be aware of the potential 
biases the technique introduces to the measured transcript profile. 
RT-qPCR data analysis is in comparison to data generated by the 
majority of other single cell methods relatively easy to perform. 

Figure 3. Cell heterogeneity. Single-cell analysis allows 
identification and characterization of different cell types (A) and 
studies of heterogeneity within respective cell types (B).
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However, single-cell data cannot be analyzed by the same means 
as cell population data, for example, normalization with reference 
genes is not possible. In summary, single-cell gene-expression 
profiling using RT-qPCR can be an affordable and soon to be 
standard technology in many laboratories. 

Five-year view
Single-cell gene-expression profiling offers scientists a new tool 
to screen and study clinical samples with improved resolution. 
Today, RT-qPCR is becoming a standardized method that is used 
routinely, but its application in single-cell studies is not yet well 
established. Today, several methods to collect small size biopsies 
and rare subpopulations exists, but further improvments to mini-
mize biopsy size and maximize the number of cells that can be 
analyzed are needed. It will be important to minimize the number 
of cells that are lost in sample preparation, such as uncontrolled 
cell lysis in cell dissociation. Optimally, all cells in the biopsies 
should be analyzed if needed. Fast development of simplified and 
standardized single-cell collection techniques that are fully com-
patible to single-cell gene-expression profiling is expected. In the 
next few years, we will hopefully have access to fully integrated 
systems for cell collection and RT-qPCR. We also expect the 
development of improved tools to analyze large single-cell data 
sets. In addition to transcripts, information regarding genomes, 
proteins, metabolites and cell morphology will be measured at 

single-cell level, potentially in the same individual cell. Single-
cell analysis will be used to study the compensation of cell types 
in samples and for refined bio marker analysis in well defined 
cell types and cell subpopulations. Furthermore, single-cell gene-
expression profiling is expected to be used to detect and analyze 
rare subpopulations of cells, such as cancer stem cells and circu-
lating tumor cells. Ultimately, single-cell analysis will become a 
valuable tool in various diagnostic and prognostic applications. 
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Key issues

• One of the main limitations of classical gene-expression profiling in diagnostics is that measurements are performed on a mixture of 
cells in unknown proportions. 

• Single-cell gene-expression profiling allows identification and characterization of different cell types and cell subtypes. Furthermore, 
phenotypic heterogeneity can be studied within the same cell type.

• Reliable single-cell gene-expression profiling requires a carefully optimized workflow to minimize RNA losses.

• Cell collection and data analysis are current bottlenecks in reverse transcription quantitative real-time PCR-based single-cell  
gene-expression profiling.

• Single-cell analysis opens up new possibilities for precise tumor diagnostics. Detection of rare tumor cells and new biomarkers 
correlated to specific tumor cell subpopulations are expected to result in refined diagnostic applications. 
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