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Biological material is heterogeneous and when exposed to stimuli the various cells present
respond differently. Much of the complexity can be eliminated by disintegrating the sample,
studying the cells one by one. Single-cell profiling reveals responses that go unnoticed when
classical samples are studied. New cell types and cell subtypes may be found and relevant
pathways and expression networks can be identified. The most powerful technique for
single-cell expression profiling is currently quantitative reverse transcription real-time PCR
(RT-qPCR). A robust RT-qPCR workflow for highly sensitive and specific measurements in
high-throughput and a reasonable degree of multiplexing has been developed for targeting
mRNAs, but also microRNAs, non-coding RNAs and most recently also proteins. We review
the current state of the art of single-cell expression profiling and present also the
improvements and developments expected in the next 5 years.
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Why single-cell profiling?
Cytomics is the analysis of cell system (cytome)
heterogeneity and the use of the measured data
to determine the system’s molecular phenotype
that results from its genotype and the exposure
to environment [1]. Tissues comprises many
cell types, often with specialized functions,
which respond to different stimuli. If we are
interested how an organ reacts to a change in
environmental conditions, stimuli or a certain
treatment, studying a traditional sample com-
prising hundreds of thousands of cells, then we
measure the combined response of all the cells
present. If only some cells, perhaps a minority
cell type, are affected, then their response may
go unnoticed against the background of all the
nonresponsive cells. Disintegrating the tissue
into individual cells that are sorted and then
profiled one by one, we can much more sensi-
tively detect and in much greater detail study
the response. Also seemingly, homogeneous
cells can show highly variable response to
stimuli. This was demonstrated already in one
of the first single-cell reverse transcription
quantitative PCR (RT-qPCR) expression pro-
filing papers in 2005, where highly skewed

distribution of transcripts among seemingly
homogeneous beta cells collected from a cell
line was found [2]. The skewed distribution
could be satisfactory modeled with a log nor-
mal distribution (FIGURE 1). Same kind of distri-
bution was observed for all the transcripts
studied and was also found in primary beta
cells collected from the islets of Langerhan in
mice. This skewed distribution has then been
found for all transcripts in all kinds of cells
that metabolize mRNA, suggesting that it
reflects a fundamental behavior. Only known
exception is the amphibian oocyte. They do
not metabolize RNA and are very homoge-
neous as to the content of mRNAs. Studies of
expression dynamics in individual cells using
fluorescent probes have revealed a plausible
mechanism. Expression takes place in bursts,
with very rapid increase of the amount of a
particular mRNA followed by a slow decay
(FIGURE 1C) [3,4]. Currently, there are no mecha-
nisms known that would synchronize bursts in
individual cells. Integrating the burst kinetics
over the cell population, a distribution of
transcripts among cells that is consistent with
the observed log normal distribution in single-
cell profiling is obtained [4]. Recent theoretical
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studies suggest that more appropriate description might be the
related gamma distribution, but with current measurement pre-
cision, the lognormal fitting commonly used is good enough [5].
The frequency of transcriptional bursts varies among genes and
is typically in the order of minutes to hours [6]. Also proteins
are produced in bursts, although the kinetics is slower, with a
reported frequency of hours to days [7].

When a traditional many-cell sample is studied, the total
number of transcripts is measured. If we divide by the number
of cells, then we obtain the normal, so called arithmetic average
(e.g., the arithmetic average of 2 and 8 is: (2 + 8)/2 = 5). The
arithmetic average, however, is not the expected count of tran-
scripts in the typical cell of the sample. The statistical definition
of the typical cell is the median cell, when the cells are sorted
based on the number of the particular transcript they contain.
Because of the underlying lognormal distribution, the number
of transcripts in the typical cell will rather be the geometric
average of the number of transcripts in each cell. The geometric
average is obtained by multiplying the numbers of transcripts in
each cell and then taking the nth root of the product (e.g., the
geometric average of 2 and 8 is:

p
2 � 8 = 4). The geometric

average is always lower than or equal to the arithmetic average;
it can never be higher. Nor can the geometric average be deter-
mined from traditional studies of many-cell samples. It can only
be calculated from single-cell measurements.

Most genes in a cell are expressed seemingly independently
of each other, and the transcript levels measured across indi-
vidual cells do not correlate. But there are exceptions. Genes
involved in the same pathway or those that are part of a
common network show correlated expression on the single
cell level. Correlations of transcript levels are also seen on tra-
ditional many-cell samples. These correlations are exploited
in diagnostics as expression signatures reflecting disease state,
indicating response to treatment or predicting survival.
Although these correlations are most powerful to predict clin-
ical responses, they only reflect the genes that are affected by
a certain environmental condition. The genes do not have to
be, and usually are not, involved in the same biological
process.

In this review, we discuss the experimental workflow of
single-cell expression profiling. The rationale of each step is
general for most single-cell methods, and we have chosen to
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Figure 1. Single-cell gene expression data. (A) Distribution of transcripts among like cells is skewed (B) and can be modeled with
avlognormal distribution [1], here, exemplified by the expression of GS in 258 primary astrocytes [51]. (C) Transcripts are produced in
bursts, with variable frequency and amplitude [6]. The burst kinetic accounts for the lognormal distribution of transcripts among like cells.
GS: Glutamine synthase.
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exemplify them on the basis of qPCR methodology. For tech-
nology overviews, we refer to other reviews [8–13].

Collecting single cells
Arguably, the most challenging step in single-cell profiling is to
obtain representative individual cells with unperturbed expres-
sion profiles. Analysis of individual cells requires tissues to be
dissociated. Cells are commonly separated from each other by
mechanical forces, enzymatic digestion or a combination of
both [14]. The generation of single-cell suspension is often
accompanied by cell death and altered gene expression. Even
established cell lines are affected by the enzymatic treatments
[STÅHLBERG A, UNPUBLISHED DATA]. The bias induced by the cell dissocia-
tion depends on the protocol used, but it also affects the genes
differently. So far, most single-cell studies ignore the bias intro-
duced by the cell dissociation step. It is one of the most chal-
lenging steps to control, and more studies addressing cell
dissociation are needed to elucidate its importance and effect
on downstream applications [15]. Expression bias induced by
sampling and preanalytical processing is a problem not exclu-
sive to single-cell studies; it is a serious problem of all molecu-
lar diagnostics [16].

Methods such as FISH [17], in situ proximity ligation assays
(PLAs) [18], spatial sequencing and microdissection [19] do not
require cell dissociation. Information about the spatial position
of each cell and its relation to different morphological parame-
ters is often valuable information when interpreting the mea-
sured molecular signatures of individual cells. A drawback is
that in situ analysis is hard to correlate to features of the indi-
vidual cells, since cell borders are often difficult to identify and
tissue preparations may cut through cells. Another limitation of
in situ methods is that they require some cell fixation, which
usually has negative impact on the nucleic acids’ integrity. Sam-
ples collected with microdissection for downstream analysis
have similar limitations as the in situ methods.

A common way to collect cells today is by FACS. FACS has
the advantage that cells can be selected for analysis based on
light scattering and fluorescence, which reflect size, granulation,
the presence of unspecific fluorescent markers and the specific
binding of fluorescent labeled antibodies. These options to
enrich for the cells of interest and the high-throughput capacity
of FACS make it most useful for the screening of high cell
numbers. The limitation is that the cells must be in suspension,
which requires tissue to be dissociated and, consequently, the
loss of the cells’ history. Another issue is cells are stressed,
which may affect their expression profile. Also it is not possible
to inspect the cells visually to decide which to collect. The
development of QuantiGene FlowRNA and SmartFlare RNA
detection probes is the two strategies that can detect and quan-
tify specific RNAs using FACS, where the latter is applied on
living cells [20,21]. DEPArray is a new technology that allows
cells to be sorted in a similar way as by FACS, but allows for
visual inspection and induces less stress [22].

A third strategy is to pick cells either manually or automati-
cally using microaspiration technique [1,8]. Either the whole cell

or the cytoplasm only is collected. The latter can be used when
analyzing cells in tissue minimizing the perturbation caused by
dissociation. However, when collecting cytoplasm, it is hard to
control how much of the cytoplasm is extracted, which may
introduce some variation. Advantage of microaspiration is that
it is readily combined with visual inspection of the cytoplasm
with essentially any microscopy setup.

The risk that tissue dissociation or general removal of the
cells from their natural environment induces expression artifacts
calls for proper controls. Generally, it is hard to prove that the
collected cells represent the population of interest and that the
measured profiles indeed reflect the in vivo expression. When
all cells in a tissue are collected, one test is to sum the mea-
sured transcripts in all the cells and compare with the profile
measured by traditional means of a corresponding many-cell
sample. Agreement is expected to be high [23]. Disagreement
would suggest that the particular protocol used for the collec-
tion of the individual cells introduces bias. This is most rele-
vant control, but is only applicable when a dominant cell type
is of interest. Any bias induced in a minority cell type will be
masked by the expression of the dominant cells in the classical
analysis. Another approach to validate the cell collection proce-
dure is to apply two independent techniques and compare the
outcome. New approaches to collect and/or enrich for specific
cells are being developed [11,13] including label-free techniques
such as acoustophoresis [24].

Sampling ambiguity
Because of the highly skewed (lognormal) distribution of tran-
scripts among cells, even high expressed genes will have rather
few transcripts in most cells. When analyzing single cells, it is
important to use a workflow that minimizes losses (FIGURE 2).
Optimally, this is a workflow without any washing steps, which
inevitably lead to losses. These workflows are based on lysis
reagents that keep the RNA intact and available and are com-
patible with downstream reverse transcription (RT) and subse-
quent PCR. After direct lysis, the RNA is reverse transcribed.
RT yields vary; a range of 0.5–80% was measured for various
target genes when the reverse transcriptase and the priming
strategy were varied [25,26]. For single-cell work, it is critical to
use a highly efficient reverse transcriptase that is not inhibited
by the direct lysis reagent. The cDNA produced by the RT can
be quantified directly by qPCR. However, if expression of mul-
tiple genes shall be measured, then preamplification should be
considered, since it may improve precision. In profiling, qPCR
is run in singleplex reactions: the sample is aliquoted, and one
target is quantified per aliquot. Even if the qPCR assay is
highly optimized and accurately measured, the number of tar-
get molecules in that particular aliquot, the approach may
introduce very high confounding variation due to sampling
ambiguity if the average number of targets per aliquot is low.
Assume we are interested in analyzing 100 genes (in practice, it
would probably be 96, but we assume 100 for simplicity). We
also assume that the RT produces 100 cDNAs of a particular
targeted transcript. If we divide the cDNA into 100 aliquots
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for singleplex qPCR, then we expect each aliquot to have in
average one of the particular targeted cDNAs. In practice,
each aliquot will not obtain exactly one target cDNA; rather
there will be variation in the number of target cDNAs among
the aliquots due to random effects of the sampling. Some ali-
quots will indeed contain a single target cDNA, but some
will contain two, perhaps three or even more of the targeted
cDNA, while some aliquots will have none. The probability
an aliquot contains a particular number of target cDNA is
given by the Poisson distribution, which for some selected
cases are plotted in FIGURE 3A. For the case when the average
concentration is one target cDNA per reaction volume, the
probability to obtain exactly one target cDNA in an aliquot
is 37%. It is 18% probability to obtain two, 7% to obtain
three, but it is also 37% probability that an aliquot has none
of the targeted cDNAs. From the latter, we calculate that the
probability an aliquot taken from a sample containing on
average one targeted cDNA per aliquoted volume is positive
to: 100–37 = 63%. Corresponding calculation can be made
for other average concentrations to produce a plot of the
probability that an aliquot is positive versus the average con-
centration. From such plot, the theoretical limit of detection
(LoD) of qPCR can be determined. If we analyze data and
draw conclusions at 95% CI, then the LoD is the concentra-
tion at which 95% of the reads are positive. From the plot
in FIGURE 3A follows, this is at an average concentration of three
target molecules per reaction volume. In practice, because of
limited RT efficiency, experimental impression and other

confounding contributions, the LoD of an RT-qPCR analysis
can be substantially higher.

Sampling ambiguity also compromises the precision. The
plot in FIGURE 3B shows the standard deviation (SD) of measured
Cq values of replicates introduced by the sampling ambigu-
ity [27]. It follows that the sample should have an average of
some 35 target molecules per reaction volume to keep the con-
tribution to SD from sampling ambiguity below 0.25 cycles,
which in many studies would contribute significantly to the
total confounding variance of the experiment [28]. If the single-
cell content is divided into 100 aliquots, then the number of
target mRNA molecules in the cell should have been 3500,
assuming 100% RT efficiency, not to exceed this contribution.
In reality, RT efficiency is limited [25,26], and a larger number
is required. Because of the underlying lognormal distribution
of transcripts among individual cells, only the most abundant
transcripts will be present at 3500 or more copies in the major-
ity of cells to be measured with reasonable accuracy based on a
strategy that divides the original cell content into aliquots for
singleplex qPCR, and even for those transcripts, many cells will
have too small a number of mRNAs to be quantified with
precision.

Preamplification
Superior strategy to quantify many transcripts in a single cell is
to perform RT on the total amount of extracted material and
then preamplify the cDNA produced. Although several pream-
plification strategies have been described in literature, for
single-cell profiling, the preferred method is target-specific mul-
tiplex PCR. The purpose of the preamplification (also known
as PreAmp or target specific amplification) is to multiply the
number of copies of the targeted transcripts such that the sam-
ple can be aliquoted for singleplex PCR without introducing
serious sampling ambiguity. Critical, of course, is that the pre-
amplification step itself does not introduce substantial variation
or bias. It is well known that multiplex PCR is a highly com-
plex reaction, where the simultaneous amplifications of the
large number of targets may interfere. As amplicons from the
most abundant target accumulate, their continued amplification
consumes large amounts of reagents, which are depleted,
compromising the PCR efficiencies and introducing bias. To
avoid the depletion of reagents, preamplification should be run
a limited number of cycles such that high level of any amplicon
is avoided. Also, high-abundant targets, such as ribosomal
RNAs, should not be included in the preamplification.

Most critical for successful preamplification is to use highly
optimized qPCR assays. We typically aim to reach PCR effi-
ciencies of ‡90% with high reproducibility (i.e., low random
noise, also reflected by a narrow confidence interval of the esti-
mated PCR efficiency). Many off-the-shelf assays offered com-
mercially do not meet these criteria although they may perform
satisfactory based on the criteria set up by the supplier. It is
therefore advisable for designing our own assays, or order cus-
tomized assays for high-performance qPCR by specialized pro-
viders. Using probe-based assays is an advantage since they

Sample
collection

Cell 
dissociation

Single cell
collection

Cel lysis Purification

Reverse
transcription

Pre-
amplification

qPCR

Data
analysis

Figure 2. Overview of single-cell gene expression profiling
by real-time quantitative PCR. Sample collection, cell
dissociation and purification are study dependent steps.
qPCR: Quantitative PCR.
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usually perform better, and signals from aberrant products are
suppressed. The probes are only used in the downstream
qPCR; in the preamplification, they are left out or ignored.
Nested designs can be used, which have the advantage that
primer–dimer products formed during preamplification will
not be amplified by the inner primers used in the downstream
singleplex qPCRs. Another design strategy that may improve
preamplification performance is to design all primers with
3´-termini that cannot interact in any combination; for exam-
ple, all primers ending with either A-3´ or C-3´ [29]. It has also
been suggested to treat the preamplified cDNA with Exonucle-
ase I to remove unincorporated primers before proceeding with
the singleplex qPCR [29].

The number of preamplification cycles needed depends on
the downstream qPCR platform used and is mainly determined
by its reaction volume. It also depends on the initial cDNA/
DNA concentration, which may vary across cell types, but is
primarily determined by the various dilution factors and
volumes transferred in the workflow: the amount of mRNA
transferred into RT; the fraction of the cDNA used for pream-
plification and the fraction of the preamplified cDNA trans-
ferred into each singleplex qPCR. If the preamplified material
is divided into 96 singleplex qPCRs, then one more amplifica-
tion cycle is needed than if it is divided into 48 aliquots only.
Since the amount of preamplified material loaded onto the
qPCR platform is small, then it is advantageous to keep reac-
tion volumes down and concentrations high. This requires
using reagents that are compatible. The direct lysis reagent may
inhibit RT, and the cDNA reaction mix may inhibit PCR.
Some suppliers have started to provide five-times reverse
transcriptase reagents which have the advantage that a smaller
volume is added compared with when using the traditional
two-times mix.

Among the current high-throughput platforms, smallest reac-
tion volume (6.75 nl) is used in the BioMark 96.96 dynamic
arrays (for comparison of reaction volumes in high-throughput
qPCR platforms, [30],). Out of this, about 40% originates from
the preamplification mix; rest is added reagents, primers and
reaction/loading buffers. Using 50 ml preamplification, Fluidigm
recommends 18 cycles preamplification for single-cell profiling
(and 14 cycles for conventional profiling). This is minimum
and often suboptimum. If the cell contained a single mRNA
molecule that indeed is reverse transcribed into a cDNA mole-
cule, then 18 cycles of preamplification, assuming 100% PCR
efficiency, produces 217 = 131,000 copies (since cDNA is single
stranded, the first PCR cycle does not amplify; it produces
double-stranded cDNA, [25],). This gives an average of (0.4 �
0.00675/50) � 131,000 = 7 target amplicons per reaction
chamber. An average of 7 is associated with substantial SD
(FIGURE 3). In practice, it is worse because preamplification PCR
efficiencies are not close to 100%. Rather, they are in the best
case around 90% assuming that the assays are well designed for
the purpose, and more often around 80% if less optimized
assays are used. With 80% efficiency, there is an average of only
(0.4 � 0.00675/50) � (1 + 0.8)17 » 1 target amplicon per
reaction chamber, which is even below the LoD at 95% CI.
With assays having an efficiency of 90%, an average of three
target amplicons per reaction chamber is obtained from a single
template cDNA, which is just at the LoD. Hence, a single tar-
get molecule in the cell will generally be detected with 18 cycles
preamplification using a highly optimized assay, but the preci-
sion in the quantification will be poor. Precision can be
improved by reducing the preamplification volume and running
few more preamplification cycles. Using 20 ml reaction volume
and preamplifying for 20 cycles, a single target cDNA produ-
ces an average of (0.4 � 0.00675/20) � (1 + 0.9)19 » 27 target
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amplicons per reaction chamber, which is reliably detected
and readily quantified with high precision (FIGURE 3). The
OpenArray from Life Technologies uses reaction volumes of
33 nl, and 18 cycles in 50 ml preamplification are sufficient
to quantify down to a single copy with high precision. The
WaferGen SmartChip uses 100 nl and the Roche LC1536
uses 500–2000 nl reaction volumes and require even less
extensive preamplification.

The preamplification is a critical step in the single-cell profil-
ing workflow and shall be thoroughly validated [31]. This is
done using a validation sample that contains all the targets at
reasonably high concentrations. It can be a field sample or a
cDNA library, but often these will not contain all the targets at
sufficient concentrations. Better is then to base the validation
sample on purified PCR products or synthetic targets. The vali-
dation sample is split into halves. One half is analyzed by sin-
gleplex qPCRs for all the targets. The second half is divided
into (at least) triplicates that each is preamplified and then
analyzed in singleplex qPCRs for all the targets. In parallel, a
nontemplate control is analyzed following the same scheme.
The nontemplate controls are inspected to make sure none of
the reactions produces primer–dimer products at levels that
would interfere with quantification. The assay performance is
assessed by comparing the measured Cq values with and with-
out preamplification. For unbiased preamplification, the same
difference between Cq values with and without preamplifica-
tion is expected for all the assays. Small deviations are accept-
able if they are reproducible, since they will cancel in any
relative comparisons, which is standard procedure when analyz-
ing expression profiling data [32]. Reproducibility is more criti-
cal. It is assessed for each assay separately by calculating the SD
of the preamplification replicates. High SD limits the ability to
measure biological differences [33], and assays that show poor
reproducibility in preamplification should be redesigned or not
trusted for small differences. If the validation sample was a
cDNA library, then one shall verify that the target cDNA was
present in sufficient concentration before disqualifying an assay,
since a low starting concentration would also lead to high SD
because of the sampling ambiguity (FIGURE 3B).

qPCR
After preamplification, the sample is divided into aliquots,
using some automatic or robotic loading system that usually is
platform dependent, and is analyzed in singleplex qPCRs.
qPCR replicates are generally not performed, since they add to
the cost of the experiment and do not really improve precision,
since the reproducibility of qPCR generally is very high.
Rather, qPCR replicates may compromise precision if the pre-
amplified cDNA has to be divided into a larger number of ali-
quots, since this will increase sampling ambiguity. If there is
space on the qPCR platform, then it is better to analyze more
cells than running technical replicates [33]. The qPCR assays
can be either dye or probe based. Probes have the advantage
that the interference from primer–dimer signals is suppressed.
However, Cq values of probe-based assays can be compromised

by the presence of primer–dimer products even when these are
not seen due to competition for reagents [34].

Normalization & data analysis
Data should not be normalized. Rather, cells shall be compared
based on the data as measured, which is equivalent to normali-
zation per cell. This is the far most intuitive way to compare
expression data for single cells. One should absolutely not nor-
malize to any kind of house-keeping genes or presumed refer-
ence genes, since the burst kinetic described above gives rise to
seemingly uncorrelated variations between randomly selected
genes and any such normalization would mess up the data,
resulting in gibberish [23].

For most cell types, the experimental protocol is highly repro-
ducible, and corrections for yield variations are not needed [2,29,31].
Most challenging are cells with high lipid content, such as adipo-
cytes and oocytes that typically require an extraction protocol
based on washing, which may lead to losses. For those cells, the
protocol should be validated using a spike, preferably an artificial
RNA with A-tail and 5´-cap to mimic the behavior of native
mRNA [35]. Optimally, the spike is microinjected into the cell,
in which case, it reflects also the extraction yield.

Single-cell expression data are analyzed following essentially
the same steps as for traditional data. Detailed step-by-step
guide was recently published [27], and only the main aspects are
discussed here. Single-cell expression data typically suffer from
high level of missing or off-scale data, where off-scale data refer
to Cq values too high to be trusted. When using dye reporter,
off-scale data are usually due to the formation of aberrant PCR
products known as primer–dimers and can be recognized by
performing melt curve analysis. Those Cq values cannot be
trusted and should be deleted. Missing data are then replaced
for each gene separately for the highest trusted Cq value mea-
sured plus an offset. If the cells studied are of the same type
and expected to express common markers, then a small offset
such as +1 should be used, since the failure to record a Cq
value in those cases most likely is due to that particular reac-
tion chamber did not receive a target molecule. An alternative
is to impute the missing data taking into account the expres-
sion level of the other genes [27]. If the sample is heterogeneous
with respect to cell types or cell states characterized by the
expression of specific markers, then a larger offset, such as 4–6,
shall be used to give the missing marker a high significance.
Data are typically autoscaled to give all the markers equal
weight and analyzed with multivariate methods such as princi-
pal component analysis, Hierarchical Clustering and the Self-
Organized Map [36]. Usually, the profiling, at least initially, is
performed for a large number of markers many of which will
not be responsive to the particular treatment or environmental
conditions studied. Removing the nonresponsive markers will
improve separation in the multivariate analyses. Interactive
tools, such as dynamic principal component analysis, allows
variable selection to be performed based on either the p-value
or differential expression between two groups or based on the
variance for any number of groups.
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Other biomolecule targets
Although mRNA is the common target in single-cell expression
profiling, also miRNA can be profiled using the same work-
flow [37]. The reaction is not as specific as for mRNA and the
sensitivity is lower, but this is due to general limitations when
assaying a short template molecule and not particular to single-
cell work. Proteins can also be profiled using PCR-based meth-
ods. Two related techniques, PLA and proximity extension
assays, bind two oligo-tagged antibodies to the same protein
[38,39]. The simultaneous binding brings the oligonucleotides into
proximity, which makes template for PCR. Preamplification can
be introduced into the workflow for the simultaneous analysis of
large number of target proteins. Recently, qPCR, RT-qPCR and
PLA were used to measure the amount of transfected DNA,
mRNA, miRNA, long noncoding RNA and protein in the same
single cell [40]. DNA modifications such as methylation are also
possible to monitor with single-cell resolution [41]. Results
were very encouraging, showing significant correlation between
the cellular levels of related biomolecules, implicating that it shall
be possible to map interactions and networks involving different
biomolecules on the single cell level.

Expert commentary
Today, several methods and workflows have been developed
and applied to analyze individual cells. New techniques are
continuously reported, all with their advantages and limitations.
However, the number of comparative studies of different meth-
ods is small, and efforts to reproduce reported data hardly exist.
Many single-cell profiling studies have been performed, several
based on large numbers of cells, but usually only from a small
number of biological samples. This precludes an evaluating of
the biological significance of the reported findings. Handling
and analyzing individual cells containing very few target mole-
cules call for highly optimized and carefully validated experi-
mental workflow that are reported in detail, including early
steps such as sample selection and cell collection procedure, as
well as data preprocessing and analysis. The minimum informa-
tion for publication of quantitative real-time PCR experiments
is one effort that has significantly improved the way qPCR
experiments and data are reported, allowing for reliable conclu-
sions to be drawn [42]. Open access to reported single-cell data
will also help the single-cell profiling field to develop from
being a tool for highly specialized laboratories into a standard-
ized and robust platform.

Five-year view
Single-cell expression profiling is truly enabling. We learn things
about cells that cannot be deduced or calculated from bulk
measurements, but can only be extracted from measurements
on the individual cells. This will lead to new insights into biol-
ogy, novel discoveries and possibly even challenge some dogmas.
Particularly exciting will be the new possibilities to characterize
cell types and study their differentiation and proliferation. The
tens of trillions (1013) of cells in a human body are often said
to be made up of 210 cell types subdivided into 20 categories

assembled in 1989 based primarily on function [43]. A more
recent classification suggests that there are 411 cell types [44].
However, a precise and unambiguous definition of cell type are
notoriously difficult. Environmental conditions, external stimuli,
number and nature of neighboring cells, signals from remote
cells through hormones, exosomes and other signaling substan-
ces, access to nutrients, oxygen and other vital substances,
removal of waste products, phase of cell cycle, accumulated
somatic mutations, integrated viruses, transposons, epigenetic
alterations, chromosomal rearrangements and perhaps even age
and generation will affect a cell’s molecular activities. Some may
lead to virtually irreversible differentiation, while other may lead
to reversible or even temporal changes only. Single-cell profiling
is expected to shed light on these processes, perhaps by identify-
ing cell type-specific expression networks that will contribute to
establishing a definition of cell type and defining the molecular
events that make a change virtually irreversible.

Single-cell profiling will revolutionize the exploration of
expression pathways, networks and biomolecular interactions.
These are fields currently in rapid development, theoretically as
well as experimentally. Today, this work is based on the profil-
ing of traditional many-cell samples. A stimuli usually affects
many pathways and a challenge in analysis is to separate all the
affected biomolecules into distinct pathways and networks.
Analyzing single cells is possible, indeed likely, that indepen-
dent pathways will be affected in different cells, which makes
deconvolution much easier, even trivial in some cases.

Imprinting, allelic discrimination and selective allele inactiva-
tion are biological phenomena that seem critical for normal
development, and errors in allelic expression may cause disease,
even cancer in some cases [45,46]. These phenomena are studied
on traditional many-cell samples today, making it difficult to
detect rare effects, such as the illegitimate activation of an allele
in a minority of the cells. With single-cell profiling, using
assays with single base discrimination, the differential activity
of paternal and maternal alleles can be measured by taking
advantage of single-nucleotide polymorphism. With next-
generation sequencing (NGS) suitable single-nucleotide poly-
morphisms are readily identified by the sequencing of parental
DNA. In fact, NGS is emerging as most valuable complement
to qPCR for single-cell profiling. New methods for library
preparation are being developed to preamplify the whole tran-
scriptome [47]. The NGS workflow is less robust than RT-
qPCR, suffering from greater bias and larger variation. There
may even be some drop outs. But the whole transcriptome is
analyzed, which is most valuable as an initial screen to identify
the most relevant genes to be studied in greater detail, higher
throughput and better precision by RT-qPCR. An exciting
emerging platform for single-cell profiling is the nCounter
Analysis System from Nanostring [48]. Barcoded probes are
hybridized to targets and counted using single molecule imag-
ing. Several hundreds of targets can be detected in a single
reaction, which positions the nCounter in between RT-qPCR
and NGS in multiplex capability. However, sensitivity is not
sufficient for direct analysis of the transcripts in the single cell.
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Preamplification is needed, which, as in the cases of RT-qPCR
and NGS, introduces bias and variation. All three methods
include a RT step, which is known to be highly reproducible,
but introduces gene-specific bias [25,26]. Since the bias is rarely
(never) determined for all the transcripts studied; only relative
comparisons are possible with these techniques. A most exciting
new technology for single-cell profiling is being developed by
Cellular Research [49]. It is based on the tagging of the tran-
scripts with molecular labels of various sequences with a generic
tag from a large pool. This makes most transcripts different,
with a low probability that the two transcripts obtain the same
label. After RT and PCR amplification using a gene specific
and a generic primer, the number of molecular labels repre-
sented on each particular transcript is interrogated by hybridiza-
tion. Correcting for Poisson distribution, like in digital
PCR [50], this provides the absolute count of the number of
transcripts that were present initially. Currently, this is the only
technology that approaches the determination of the absolute
count of the different transcripts in a cell.
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Key issues

• Tissues are heterogeneous, and even cells of the same type respond differently to stimuli. This is resolved with single-cell profiling.

• Single-cell collection often requires advanced sample preprocessing that may affect the measured expression profile, highlighting the

need for controls.

• Sampling ambiguity introduced by the handling of few molecules (<25) is given by the Poisson distribution and is an issue in single-cell

analysis.

• To minimize sampling ambiguity, the number of molecules processed should be maximized in all steps of the protocol including cell

lysis, reverse transcription, preamplification and quantitative PCR.

• Profiles should be compared as measured per cell; normalization to house-keeping genes or other tentative reference genes introduces

uncontrolled errors.

• Emerging technologies allow multianalyte (DNA, RNA and protein) analysis in the same cell.

• Single-cell expression profiling opens up new avenues in molecular biology and diagnostics including improved tools to define cell types,

explore expression pathways and characterize expression networks

• Single-cell profiling makes it possible to characterize rare cells.
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