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Development is driven and controlled by temporal 
and spatial changes in gene transcription, followed 
by translation of the resulting mRNAs into proteins. 
The transcriptome is broadly defined as the entire 
RNA component of an individual cell, or it is nar-
rowly and practically defined as the polyadenylated 
products of RNA polymerase II activity1,2. Recent 
advances in high-throughput sequencing technology 
make it possible to obtain information on single-cell 
transcriptomes at high resolution by RNA sequenc-
ing (RNA-seq) analysis, which can be instructive in 
regards to how individual cells respond to signals and 
other environmental cues at critical stages of cell-fate 
determination or when they acquire aberrant pheno-
types. Essentially all cells in an individual organism 
have a virtually identical genotype, but the individual 
transcriptomes reflect expression of a subset of genes, 
which is determined by their epigenetic state. Diverse 
cell types have unique transcriptomes, which can be 
used to assess the gene regulation network underlying 
their physiological functions, behavior and phenotype 
during development in multicellular organisms2.

Because cells have unique transcriptomes, such anal-
ysis should be carried out at single-cell resolution. The 
analysis should also encapsulate the exact sequence, 
quantity, localization, activity (for example, being 
actively translated or degraded) and modifications 
(such as base methylation) of all types of full-length 
RNAs at single-base resolution1–3. Indeed, mRNA, 

Development and applications of  
single-cell transcriptome analysis
Fuchou Tang1,2, Kaiqin Lao3 & M Azim Surani1

Dissecting the relationship between genotype and phenotype is one of the central 
goals in developmental biology and medicine. Transcriptome analysis is a powerful 
strategy to connect genotype to phenotype of a cell. Here we review the history, 
progress, potential applications and future developments of single-cell transcriptome 
analysis. In combination with live cell imaging and lineage tracing, it will be possible 
to decipher the full gene expression network underlying physiological functions of 
individual cells in embryos and adults, and to study diseases.

rRNA, tRNA and small nuclear RNA can have more 
than 100 structurally distinct post-transcriptional 
modifications at thousands of different sites3. Because 
of technical limitations, such as the sensitivity of detec-
tion, the majority of studies on transcriptomes have 
been carried out with hundreds of thousands or even 
millions of cells4–7. In some instances, however, it is not 
possible to collect large numbers of cells, such as from 
very early embryos, which makes their transcriptome 
analysis very difficult, if not impossible8.

Recent studies have also shown that gene expression 
is invariably heterogeneous even in evidently similar 
cell types9,10. Such stochastic variations in the tran-
scriptomes have important implications for cell-fate 
decisions11. For example, Sunney Xie and colleagues 
recently showed that a stochastic single-molecule event 
can trigger phenotype switching of a bacterial cell12,13. 
Differences in transcriptomes may also provide critical 
information on the composition of cell types in dis-
eased tissues, including tumors that could contain 
a small number of cancer stem cells9,14. The hetero-
geneity of gene expression among similar cell types 
can be due to differences in the epigenetic status of the 
genome, circadian clock, cell cycle, microenvironment 
or niche as well as intrinsic transcriptional ‘noise’15–22.  
In fact, gene expression is stochastic in essentially 
all model organisms from bacteria to humans19–22. 
This is partly because for the majority of genes in 
an individual cell, only one (for prokaryotes) or two 
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copies (for most of the eukaryotic organisms) of genomic DNA 
templates are available for transcription, and the molecular events 
that trigger their expression will intrinsically have stochastic char-
acteristics22. To understand the basis and importance of hetero-
geneity and stochastic aspect of gene expression, it is essential to 
examine transcriptomes of individual cells.

history of single-cell transcriptome analysis
Transcriptome analysis at single-cell resolution was pioneered two 
decades ago by Norman Iscove, using exponential amplification 
of single cell cDNAs by PCR23, and by James Eberwine using lin-
ear amplification of cDNAs by T7 RNA polymerase–based in vitro 
transcription (IVT)24,25 (Fig. 1). These approaches have accelerated 
insights on the molecular mechanisms of development and function 
of the mammalian neural system, especially because these cells are 
probably the most heterogeneous group of cells. In this case, tran-
scriptomes obtained at the cellular or even subcellular resolution in 
a long axon can be informative26–29.

Later, the use of commercially available high-density DNA 
microarray chips led to the development of single-cell micro-
arrays30–39 (Table 1). Although this method is powerful and can 
be used to obtain whole-genome gene expression patterns32,40, 
the cDNA fragments being amplified are in general short (several 
hundred base pairs) and cannot be used to detect transcripts gen-
erated through alternative splicing. Most importantly, the method 
can only be used to detect known genes.

Generating single-cell transcriptomes
To generate single-cell transcriptomes, individual intact cells are 
isolated and transferred into a test tube containing lysis buffer. 
The whole-cell lysate is then reverse-transcribed using oligo(dT) 
primers to convert mRNAs with poly(A) tails into first-strand 
cDNAs. The residual mRNA templates are degraded and a poly(A) 
tail is added to the 3′ ends of the first-strand cDNAs. These cDNAs 
are uniformly amplified with universal oligo(dT) primers. A key 
requirement for the procedure is that the buffers for earlier and 
later reaction steps are compatible30. In addition, enzymes used 

in the earlier steps need to be inactivated by heat treatment. This 
approach avoids additional isolation, precipitation and purifica-
tion steps. The amplified single-cell cDNAs can be quality-checked 
and tested by quantitative (q)PCR, and only samples of interest 
and of high quality need to be analyzed further.

The method for the isolation of individual cells can vary. 
Picking single cells manually using a mouth pipette is the most 
straightforward option30,41, although this can be time-consuming 
and technically challenging. Laser-assisted microdissection or 
fluorescence-activated cell sorting can also be used to isolate a 
specific subpopulation of cells based on cell-surface markers or 
fluorescent reporters42–45. Cells of higher plants with cell walls 
are difficult to dissociate using enzymes, but isolation of nuclei 
after homogenization of tissues might be effective46.

It should be possible to use microfluidics systems in the future 
to isolate and track thousands of single cells in parallel in a nano-
liter of solution34,47. This will greatly enhance the accuracy and 
efficiency of analyzing single cells from a variety of sources, 
including adult stem cells or cancer cells.

Analysis of all mRNAs in individual cells first requires their 
release from cells, which can be accomplished with detergents 
but these should not interfere with the subsequent reverse-
transcription process30,48. Several types of detergents can be 
considered, such as guanidine thiocyanate and Nonidet P-40  
(refs. 30,32,33,40,48). Both the type and amount of detergents 
need to be adjusted to obtain the best results for different cell 
types, which depends on the propensity of cells to undergo lysis. 
When working with a new cell type, several detergents should 
be tested in parallel at different concentrations to obtain the 
best conditions for the specific cell type. In most instances, the 
whole-cell lysate can be used directly for reverse transcription 
without the need to remove detergents23,30. It is also possible to 
isolate and purify mRNAs from single-cell lysate first, by using 
oligo(dT)-coated magnetic beads or oligo(dT) peptide nucleic 
acids that will capture the mRNA amid proteins, metabolites 
and cell debris32,33,40. This strategy has been reported to work in 
conjunction with single-cell cDNA microarray analysis33. This 
approach can be combined with the isolation of genomic DNA 
from the same cell for genotype analysis32. As the lysate buffer 
is washed away while specifically isolating mRNAs with poly(A) 
tails, this approach allows for the use of much stronger lysate 
conditions for a quick and efficient release of mRNAs32.

Several types of reverse transcriptases are available for the 
preparation of cDNAs49. The SuperScript III (Invitrogen) is most 
widely used for this purpose, which can potentially generate full-
length cDNAs of up to 10 kilobases (kb) (refs. 30,41,49). When 
using the whole-cell lysate, oligo(dT) primers are usually used for 
this step because the use of random primers would result in the 
amplification of the cDNAs of rRNA and tRNA, which are two 
orders of magnitude more abundant than mRNAs. To prevent 
this, in principle, mRNAs can be specifically isolated, purified 
and then combined with random primers for priming the reverse 
transcription of full-length mRNAs. dNTP concentrations need 
to be carefully adjusted to permit efficient reverse transcription 
and to avoid interference with a later poly(A)-tailing step. As 
mRNA 5′ ends for different genes and the corresponding 3′ ends 
of the first-strand cDNAs are different, use of terminal deoxy-
nucleotidyl transferase to add poly(A) tails can enable unbiased 
amplification of all expressed genes’ cDNAs.

Single cell

cDNAs

Amplification

Linear (IVT-based) Exponential (PCR-based)

Microarray
Next-generation

sequencing
(SOLiD or Solexa)

Single-molecule
sequencing

mRNAs

Figure 1 | Strategies for single-cell transcriptome analysis. Solid lines 
represent strategies that have been demonstrated experimentally; dotted 
lines represent proposed strategies that will probably be realized in the 
near future.

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



S�  |  Vol.8  No.4s  |  april 2011  |  nature methodS Supplement

review

After reverse transcription and tailing, the single-cell cDNAs 
can be amplified. One representative individual mammalian 
cell contains ~10 pg of total RNA and ~0.1 pg of mRNA, which 
usually needs to be amplified around ten million–fold to match 
the requirement for a standard microarray analysis. Either PCR 
or IVT can be used for amplification30,50,51. The advantage of 
the PCR strategy is the exponential amplification of cDNAs so 
that single-cell cDNAs can be amplified millions-fold in several 
hours30,50; its disadvantage is the accumulation of primer dimers 
and other nonspecific byproducts during amplification, especially 
during later cycles of PCR23,30. The merit of the IVT strategy is 
its stringent specificity while reducing accumulation of nonspe-
cific byproducts24; its drawback is that cRNAs typically less than  
1 kb are generated50. The IVT procedure is also more tedious and 
time-consuming, and every round of IVT can amplify the cDNAs 
only up to 1,000-fold50,51. In practice, single-cell cDNAs can be 
amplified sufficiently for microarray analysis in two rounds of 
PCR amplification32–34, in three rounds of IVT amplification35 
or via a combination of PCR and IVT amplification30.

We recently improved a widely used single-cell cDNA ampli-
fication protocol30,52, which is highly quantitative but generates 
only about 0.85-kb fragments at the 3′ ends of the mRNAs. We 
combined it with next-generation sequencing to develop single-
cell RNA-seq analysis41. We increased the efficiency of the pro-
tocol and can generate up to 3-kb fragments of cDNAs2,41. We 
also used amine-modified primers for the second round of PCR 
to remove the residual free primers and primer dimers from the 
sequencing library to improve throughput. Furthermore, a previ-
ous single-cell cDNA microarray analysis detected about 6,800 
distinct gene transcripts in an individual embryonic stem cell30, 
whereas we detected expression of about 10,800 genes, which 
means that our assay detected expression of nearly 60% more 
genes in an individual embryonic stem cell53.

Because of the higher sensitivity of next-generation sequenc-
ing, amplification by additional IVT step is no longer needed. We 
showed that the amplification method works faithfully for the 
detection of the full transcriptome of individual early mouse blasto-
meres. Up to 60% of all the transcripts in the mouse genome are 
expressed at this stage in an individual cell41. We also found that 
up to 20% of genes with known splicing isoforms express multiple 
transcript variants in a single cell, highlighting the complexity of 
an individual cell’s transcriptome41. And we found thousands of 
previously unknown exon-exon junctions in the transcriptome 
from an individual cell, indicating that our understanding of the 

mammalian cell transcriptome is far from complete41. Recently, 
we applied the technique to trace the process of the derivation 
of embryonic stem cells from the inner cell mass of blastocysts, 
which illustrated that the approach works faithfully for the analysis 
of relatively small-sized individual cells53. Thus, the technique is 
potentially applicable for the analysis of many cell types in develop-
ing embryos and in adult tissues, although the method has so far 
not been used on different cell types.

After amplification, single-cell cDNAs can be analyzed either 
on a microarray or by deep sequencing30,41. The latter provides 
more detailed and accurate information on transcriptomes with at 
least five-log dynamic range1,41,54, but it is expensive and requires 
more computational power for data analysis41. In general, 20 to  
40 million sequencing reads per cell are enough for most purposes, 
such as detection of new genes, splicing variants, polyadenylation 
sites and new exons of known genes2. To date, only the SOLiD 
system has been used for single cell RNA-seq, but the protocol 
is platform-independent. Paired-end reads will allow determina-
tion of splicing junctions from single-cell RNA-seq data more 
accurately. Microarray approaches are appropriate for obtaining 
general transcriptome information on the up- or downregulation 
of transcripts of known genes.

For bioinformatics analysis, both standard commercial soft-
ware and free academic software are available55. Recently devel-
oped bioinformatics tools for RNA-seq data analysis, such as 
Cufflinks, Scripture, alternative expression analysis by sequenc-
ing (ALEXA-seq), mixture of isoforms (MISO) and Trans-ABySS 
(assembly by short sequences), could also be used for single cell 
RNA-seq56–60. Data normalization is crucial for comparison of 
transcriptomes of different samples in the same batch and of 
samples from different laboratories and platforms. For relative 
quantification, normalization can be either quantile, reads per 
kilobases of exon model per million mapped reads (RPKM) or 
reads per million mapped reads (RPM)54. The recently developed 
‘normalization by expected uniquely mappable area’ method 
will probably improve the quantification of single-cell RNA-seq 
data61. We have shown that both quantile and RPM normaliza-
tion work well for our single-cell RNA-seq data41. But RPKM 
quantification would be preferable when RNA-seq methods can 
detect full-length cDNAs.

The absolute quantification of cDNAs can be obtained by using 
spike-in RNA30, which could be any predetermined quantity of 
poly(A)-tailed RNA that is not present in the transcriptome of the 
cell to be analyzed. For mammalian cell transcriptome analysis, 

table 1 | Single-cell multiplex gene expression analysis strategies
techniques target rnas amplification throughput references

Single-cell RNA-seq mRNAs with poly(A) tail Yes High (whole transcriptome) 41,53
Single-cell cDNA microarray (PCR-based) mRNAs with poly(A) tail Yes High (whole transcriptome with 

predesigned probes)
31–34,36

Single-cell cDNA microarray (IVT-based) mRNAs with poly(A) tail Yes High (whole transcriptome with 
predesigned probes)

35

Single-cell cDNA microarray (combination of  
PCR and IVT)

mRNAs with poly(A) tail Yes High (whole transcriptome with 
predesigned probes)

15,30,64,84

Single-cell microRNA profiling (PCR-based) Known microRNAs Yes High (up to several hundred  
microRNAs)

84–86

Single-cell multiplex qPCR Known mRNAs Yes Low (up to several hundred genes) 15,44,45,53,87
Single-cell multiplex qPCR Known mRNAs No Low (up to five genes) 49
Single-molecule RNA fluoresence in situ hybridization Known mRNAs No Low (up to several genes) 88,89
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usually the RNAs encoding polylysine, poly-diaminopimelic acid, 
polyphenylalanine or polythreonine with poly(A) tail are used as 
spike-in RNAs30,36,52. When only hundreds of copies of spike-in 
RNAs are added into the single-cell sample, caution is necessary 
to ensure that there is no substantial degradation of the ‘spike-in’ 
RNAs. It is also important to note that the volume of different 
types of cells is highly variable and can differ by hundreds-fold62. 
Absolute quantification is only a measure of the absolute copy 
number of each gene’s mRNA in a cell, without consideration of 
the cell volume. The concentration rather than the absolute copy 
number of mRNAs is important for determining its function in a 
cell. Theoretically, the absolute concentration of RNAs for every 
expressed gene in an individual cell can be determined from the 
amount of spike-in RNAs used, combined with determining the 
volume of individual cells63.

applications of single-cell transcriptome analysis
Single-cell transcriptome analysis can be used for determining 
gene regulatory networks at whole-genome scale and can be com-
bined with overexpression, knockout or knockdown of a gene 
of interest to reveal how it regulates gene expression in target 
cells41,64,65. This is especially relevant for the analysis of stem 
cells and cells during early embryonic development because of 
the highly dynamic and heterogeneous nature of subpopulations 
of the cells41,44. Analysis of heterogeneity among cells is emerg-
ing as an important application of single-cell transcriptomes. 
Even highly similar cell types can have different gene expression 
patterns for a wide variety of reasons9. More importantly, gene 
expression is intrinsically stochastic owing to different micro-
environments or because of the small number of molecules 
involved in transcription and translation19–22. It can be safely 
claimed that heterogeneity of gene expression is an intrinsic prop-
erty of living cells, and there are no strictly identical cells in an 
organism9. Furthermore, stochastic characteristics of gene expres-
sion can profoundly affect the fate and phenotype of a cell12,13,66. 
Dissecting the heterogeneity of gene expression in a cell popula-
tion will thus be an important application of single-cell analysis. 
Indeed, there is evidence for heterogeneity in subpopulations of 
embryonic stem cells based on the expression of Nanog, Rex1 or 
Stella15,53,67,68. Cell heterogeneity between cells in a tumor has 
been known for a long time69. Single-cell transcriptome analysis is 
a feasible strategy to identify the subpopulations in a tumor and to 
detect putative cancer stem cells. As only one individual cell needs 
to be isolated and lysed from a tissue, it is theoretically possible to 
analyze gene expression networks noninvasively to monitor the 
progress of human disease, or monitor a rare or precious biological 
sample, and to continuously trace gene expression dynamics of 
a tissue during physiological or pathological processes without 
disturbing or consuming the entire sample.

Another application is to determine the gene expression pro-
files of subcellular compartments. It is well known that there is 
active transport of mRNAs from cell body to the axons or den-
drites in the neuron for local translation26–29,36,37,70. Single-cell 
transcriptome analysis can be used to detect mRNAs specifically 
localized in axons or dendrites, which is often of great importance 
for determining physiological functions of these neurons.

As next-generation sequencing techniques provide infor-
mation at single-base resolution, it is also possible to analyze 
allele-specific gene expression in an individual cell, provided 

single-nucleotide polymorphisms are available to discriminate 
between the two alleles71. This will greatly improve our under-
standing of how the genetic and epigenetic elements influence 
allele-specific gene expression in an individual cell. Allelic imbal-
ance can accurately describe small differences between cells, 
which can arise in a number of ways through changes in relative 
allele-specific expression by mutations such as point mutations 
or by RNA editing3.

Current limitations
Although recent advances in RNA-seq analysis offer substantial 
opportunities to evaluate properties of cells, there are some draw-
backs of current single-cell RNA-seq methods. First, the stranded-
ness of mRNAs is lost in the library construction, which prevents 
discrimination between sense and antisense transcripts from the 
same locus41. Clearly, the strandedness should be preserved to per-
mit accurate annotation of the sense and antisense RNA transcripts 
from the same gene locus. Combined with the existing strand-
 specific cDNA library preparation strategies, such as T7 RNA 
polymerase–based in vitro transcription and dUTP second-strand 
synthesis strategies, it will be possible to recover the strandedness 
information for single-cell transcriptomes in the near future72.

Second, currently only the 3′ end and up to 3-kb fragments 
of mRNAs are obtained, which leaves nearly 36% of genes with 
mRNAs longer than 3 kb that cannot be fully examined. Methods 
that allow for the use of random primers for reverse transcription 
of purified mRNAs will make it possible to recover full-length 
cDNAs, including 5′ untranslated and transcription start regions 
for all expressed genes.

Third, because the method is based on reverse transcrip-
tion with oligo(dT) primers, only mRNAs with poly(A) tail 
are detected, which will exclude some long noncoding RNAs 
and most of the small noncoding RNAs41. In the future, a more 
sophisticated protocol should be developed to deplete abundant 
rRNA and tRNA while preserving all the mRNA transcripts, 
primary transcripts before polyadenylation.

Fourth, the current single-cell RNA-seq method does not per-
mit analysis of the transcriptome and genomic sequence of indi-
vidual cells simultaneously. Improving the method based on the 
strategy developed by Christoph Klein and colleagues32,33,40, it 
is possible to use next-generation sequencing to simultaneously 
obtain both full genome and transcriptome information from an 
individual cell. This will fulfill the central goal of biology and 
medicine, which is to connect the genotype and phenotype of 
individual cells under physiological or pathological conditions.

perspectives
Single-cell transcriptome analysis will eventually permit con-
nections between gene expression networks, cell lineage and 
phenotype of individual cells. Combined with live-cell imaging, 
this is potentially a powerful tool for tracing cell lineage during 
development or cell differentiation, especially in conjunction with 
florescent protein reporters73. Live-cell imaging together with  
single-cell RNA-seq will greatly improve our understanding of 
how cell differentiation is achieved and dynamically regulated 
by gene expression networks. This approach can also be used to 
analyze cellular reprogramming and transdifferentiation74.

Currently, all available single-cell transcriptome analyses rely 
on cDNA amplification. Recently developed single-molecule 

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



S10  |  Vol.8  No.4s  |  april 2011  |  nature methodS Supplement

review

sequencing has the potential to sequence full-length mRNAs from 
a single cell directly without reverse transcription and amplifi-
cation steps, which can be used to more accurately determine 
expression levels of different splicing isoforms75–77. Moreover, 
the full-length mRNA sequences will accurately determine allele-
specific gene expression with defined phase information of each 
locus. However, the sequencing efficiency of current single- 
molecule sequencing techniques still requires a few hundred 
cells, and these methods only detect about 15–25% of expressed 
mRNAs, which needs to be improved to achieve single-cell RNA-
seq, because only dozens of copies of mRNAs are produced from 
the majority of individual expressed genes in a cell76. Furthermore, 
the accuracy of the single-molecule sequencing technique is still 
relatively low and needs to be improved to acquire the exact 
sequences of every mRNA molecule at high accuracy compara-
ble to current RNA-seq76,77. This will probably be achieved by 
improving the single-molecule sequencing technique to permit 
sequencing a single mRNA or cDNA molecule repeatedly without 
damaging it.

At the moment, only the static amount of mRNAs is measured 
by single-cell transcriptome analysis, which is the result of the 
balance between transcription and degradation of mRNAs. More 
detailed analysis will require accurate quantification of mRNAs 
being actively translated78–83. This single cell translating RNA-seq 
will directly reflect the translational activity and function of the 
genes at particular time points78–83. All the genetic and epigenetic 
information in the genome needs to be read and released through 
transcription into RNAs. We are now witnessing the opportunity 
to link gene expression network with the physiology, function and 
phenotype of every individual cell. It will be possible in the future 
to model the behavior and phenotype of an individual cell based on 
its environment and its transcriptome. Finally, we may also under-
stand how a cell survives and functions properly in a complex and 
noisy environment, with a complex and noisy transcriptome.
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